1.1.3. Черный фосфор.

Содержание
  1. Фосфор (P)
  2. P2
  3. Химические свойства фосфора
  4. Получение и применение фосфора
  5. ПОИСК
  6. Фосфор
  7. История
  8. Происхождение названия
  9. Получение
  10. Физические свойства
  11. Белый фосфор
  12. Жёлтый фосфор
  13. Красный фосфор
  14. Чёрный фосфор
  15. Металлический фосфор
  16. Химические свойства
  17. Взаимодействие с простыми веществами
  18. Взаимодействие с водой
  19. Взаимодействие со щелочами
  20. Восстановительные свойства
  21. Применение
  22. Элементарный фосфор
  23. Соединения фосфора в сельском хозяйстве
  24. Соединения фосфора в промышленности
  25. Фосфатные связующие
  26. Биологическая роль соединений фосфора
  27. Токсикология элементарного фосфора
  28. Токсикология соединений фосфора
  29. Дополнительная информация
  30. 118 элементов. Глава 15: свет из мочи
  31. Начнем с истории
  32. Белофосфорные штудии: собака Баскервилей, спичечная забастовка и запрещенное оружие
  33. Все цвета фосфора
  34. Фосфор – жизнь…
  35. Происхождение названия
  36. Получение
  37. Физические свойства
  38. Белый фосфор
  39. Жёлтый фосфор
  40. Красный фосфор
  41. Чёрный фосфор
  42. Металлический фосфор
  43. Химические свойства
  44. Взаимодействие с простыми веществами
  45. Взаимодействие с водой
  46. Взаимодействие со щелочами
  47. Восстановительные свойства
  48. Изотопы
  49. Применение
  50. Элементарный фосфор
  51. Соединения фосфора в сельском хозяйстве
  52. Соединения фосфора в промышленности
  53. Фосфатные связующие
  54. Токсикология элементарного фосфора
  55. Токсикология соединений фосфора
  56. 1.1.3. Черный фосфор.: Черный фосфор – термодинамически наиболее устойчивая форма

Фосфор (P)

1.1.3. Черный фосфор.

  • Обозначение – P (Phosphorus);
  • Период – III;
  • Группа – 15 (Va);
  • Атомная масса – 30,973761;
  • Атомный номер – 15;
  • Радиус атома = 128 пм;
  • Ковалентный радиус = 106 пм;
  • Распределение электронов – 1s22s22p63s23p3;
  • t плавления = 44,14°C;
  • t кипения = 280°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,19/2,06;
  • Степень окисления: +5, +3, +1, 0, -1, -3;
  • Плотность (н. у.) = 1,82 г/см3 (белый фосфор);
  • Молярный объем = 17,0 см3/моль.

Соединения фосфора:

Фосфор (несущий свет) впервые был получен арабским алхимиком Ахад Бехилем в 12 веке. Из европейских ученых первым открыл фосфор немец Хенниг Брант в 1669 г.

, во время проведения опытов с человеческой мочой в попытках извлечь из нее золото (ученый полагал, что золотистый цвет мочи вызван присутствием частичек золота). Несколько позже фосфор был получен И. Кункелем и Р.

Бойлем – последний описал его в своей статье «Способ приготовления фосфора из человеческой мочи» (14.10.1680; работа была опубликована в 1693 г.). Позже Лавуазье доказал, что фосфор является простым веществом.

фосфора в земной коре составляет 0,08% по массе – это один из самых распространенных химических элементов на нашей планете. По причине своей высокой активности, фосфор в свободном состоянии в природе не встречается, но входит в состав почти 200 минералов, самыми распространенными из которых являются апатит Ca5(PO4)3(OH) и фосфорит Ca3(PO4)2.

Фосфор играет немаловажную роль в жизни животных, растений и человека – он входит в состав такого биологического соединения, как фосфолипид, также присутствует в белковых и других таких важнейших органических соединениях, как ДНК и АТФ.

Фосфор в Периодической таблице химических элементов Д. И. Менделеева, стоит под номером “15”, относится к 15(Va) группе (См. Атомы 15(Va) группы).

Рис. Строение атома фосфора.

Атом фосфора содержит 15 электронов, и имеет схожую с азотом электронную конфигурацию внешнего валентного уровня (3s23p3), но у фосфора по сравнению с азотом менее выражены неметаллические свойства, что объясняется наличием свободной d-орбитали, большим радиусом атома и меньшей энергией ионизации.

Вступая в реакции с другими химическими элементами, атом фосфора может проявлять степень окисления от +5 до -3 (наиболее характерна степень окисления +5, остальные встречаются достаточно редко).

  • +5 – оксид фосфора P2O5(V); фосфорная кислота (H3PO4); фосфаты, галогениды, сульфиды фосфора V (соли фосфорной кислоты);
  • +3 – P2O3(III); фосфористая кислота (H3PO3); фосфиты, галогениды, сульфиды фосфора III (соли фосфористой кислоты);
  • 0 – P;
  • -3 – фосфин PH3; фосфиды металлов.

В основном (невозбужденном) состоянии у атома фосфора на внешнем энергетическом уровне находится два спаренных электрона на s-подуровне + 3 неспаренных электрона на p-орбиталях (d-орбиталь свободна). В возбужденном состоянии один электрон с s-подуровня переходит на d-орбиталь, что расширяет валентные возможности атома фосфора.

Рис. Переход атома фосфора в возбужденное состояние.

P2

Два атома фосфора объединяются в молекулу P2 при температуре порядка 1000°C.

При более низких температурах фосфор существует в четырехатомных молекулах P4, а также в более устойчивых полимерных молекулах P∞.

Аллотропные модификации фосфора:

  • Белый фосфор – чрезвычайно ядовитое (летальная доза белого фосфора для взрослого человека составляет 0,05—0,15 г) воскоподобное вещество с запахом чеснока, без цвета, люминисцирующее в темноте (процесс медленного окисления в P4O6); высокая реакционная способность белого фосфора объясняется некрепкими связями Р-Р (у белого фосфора молекулярная кристаллическая решетка с формулой P4, в узлах которой расположены атомы фосфора), которые достаточно легко разрываются, в результате чего белый фосфор при нагревании или в процессе длительного хранения переходит в более устойчивые полимерные модификации: красный и черный фосфор. По этим причинам белый фосфор хранят без доступа воздуха под слоем очищенной воды или в специальных инертных средах.
  • Желтый фосфор – огнеопасное, сильно ядовитое вещество, в воде не растворяется, легко окисляется на воздухе и самовозгорается, при этом горит ярко-зеленым ослепительным пламенем с выделением густого белого дыма.
  • Красный фосфор – полимерное, нерастворимое в воде вещество со сложной структурой, обладающее наименее реакционной способностью. Красный фосфор широко применяется в промышленном производстве, т. к. не так сильной ядовит. Поскольку на открытом воздухе красный фосфор, впитывая влагу, постепенно окисляется с образованием гигроскопичного оксида (“отсыревает”), образует вязкую фосфорную кислоту, поэтому, красный фосфор хранится в герметически закрытой таре. В случае отмокания красный фосфор очищают от остатков фосфорной кислоты путем промывания водой, затем высушивают и используют по назначению.
  • Черный фосфор – жирное на ощупь графитоподобное вещество серо-черного цвета, обладающее полупроводниковыми свойствами – наиболее устойчивая модификация фосфора со средней реакционной способностью.
  • Металлический фосфор получают из черного фосфора под высоким давлением. Металлический фосфор очень хорошо проводит электрический ток.

Химические свойства фосфора

Из всех аллотропных модификаций фосфора самой активной является белый фосфор (P4). Зачастую в уравнении химических реакций пишут просто P, а не P4. Поскольку, фосфор, как и азот, имеет много вариантов степеней окисления, то в одних реакциях он является окислителем, в других – восстановителем, в зависимости от веществ, с которыми он взаимодействует.

Окислительные свойства фосфор проявляет в реакциях с металлами, которые протекают при нагревании с образованием фосфидов:
3Mg + 2P = Mg3P2.

Фосфор является восстановителем в реакциях:

  • с более электроотрицательными неметаллами (кислородом, серой, галогенами):
    • соединения фосфора (III) образуются при недостатке окислителя 4P + 3O2 = 2P2O3
    • соединения фосфора (V) – при избытке: кислорода (воздуха) 4P + 5O2 = 2P2O5
  • с галогенами и серой фосфор образует галогениды и сульфид 3-х или 5-ти валентного фосфора, в зависимости от соотношения реагентов, которые берутся в недостатке или избытке:
    • 2P+3Cl2(нед.) = 2PCl3 – хлорид фосфора (III)
    • 2P+3S(нед.) = P2S3 – сульфид фосфора (III)
    • 2P+5Cl2(изб.) = 2PCl5 – хлорид фосфора (V)
    • 2P+5S(изб.) = P2S5 – сульфид фосфора (V)
  • с концентрированной серной кислотой:
    2P+5H2SO4 = 2H3PO4+5SO2↑+2H2O
  • с конецнтрированной азотной кислотой:
    P+5HNO3 = H3PO4+5NO2↑+H2O
  • с разбавленной азотной кислотой:
    3P+5HNO3+2H2O = 3H3PO4+5NO↑

Фосфор выступает одновременно и окислителем, и восстановителем в реакциях диспропорционирования с водными растворами щелочей при нагревании, образуя (кроме фосфина) гипофосфиты (соли фосфорноватистой кислоты), в которых проявляет нехарактерную для себя степень окисления +1:
4P0+3KOH+3H2O = P-3H3↑+3KH2P+1O2

НАДО ЗАПОМНИТЬ: с другими кислотами, кроме указанных выше реакций, фосфор не реагирует.

Получение и применение фосфора

Промышленным способом фосфор получают путем его восстановления коксом из фосфоритов (фторапататиов), в состав которых входит фосфат кальция, прокаливая в электропечах при температуре 1600°C с добавлением кварцевого песка:
Ca3(PO4)2 + 5C + 3SiO2 = 3CaSiO3 + 2P + 5CO.

На первом этапе реакции под действием высокой температуры оксид кремния (IV) вытесняет оксид фосфора (V) из фосфата:
Ca3(PO4)2 + 3SiO2 = 3CaSiO3 + P2O5.

Затем оксид фосфора (V) восстанавливается углём до свободного фосфора:
P2O5+5C = 2P+5CO.

Применение фосфора:

Источник: https://prosto-o-slognom.ru/chimia/505_fosfor_P.html

ПОИСК

1.1.3. Черный фосфор.
    Наиболее устойчивой формой фосфора является черный фосфор. Он образуется из белого фосфора при 1,2 ГНа и 200 С. Снижение давления до атмосферного не приводит к обратному переходу в белый фосфор.

Черный фосфор получают также длительным нагреванием белого фосфора при 400 °С в присутствии катализатора – мельчайших капель ртути. Черный фосфор по [c.412]

    Красный фосфор Черный фосфор [c.

31]

    Р(ромб.) Фосфор черный [c.74]

    Фосфор в газообразном состоянии при очень высоких температурах состоит из молекул Ра, имеюш,их подобное же строение Р = Р . Однако при более низких температурах фосфор образует молекулу из четырех атомов, Р4. Она имеет структуру, показанную на рис. 6.116. Четыре атома фосфора расположены по углам правильного тетраэдра.

Каждый атом фосфора образует ковалентные связи с тремя другими атомами фосфора. Такие молекулы Р4 существуют в парах фосфора, в растворах фосфора в сероуглероде и других неполярных растворителях. Из них состоит твердый белый фосфор.

В других модификациях фосфора (красный фосфор, черный фосфор) атомы образуют более крупные агрегаты с углами Р-Р-Р, равными примерно 102°, как и сле дует ожидать для р-связей. [c.147]

    Л Белый фосфор. Черный фосфор 2,69, красный фосфор 2,20. [c.122]

    Наиболее устойчивой формой фосфора является черный фосфор. Он образуется из белого при – 1,2 ГПа и 200 °С. Снижение давления до атмосферного не приводит к обратному переходу в белый фосфор.

Черный фосфор по внешнему виду и свойствам напоминает графит, жирен на ощупь, легко разделяется на чешуйки. Полупроводник. При комнатной температуре он ни в чем не растворяется. Химически малоактивен. Неядовит, температура его воспламенения равна 490 °С.

Кристаллическая решетка чёрного фосфора состоит из ребристых слоев атомов, расстояние между которыми 368 пм (рис. 3.53). [c.414]

    Аллотропы фосфора Белый фосфор Красный фосфор Черный фосфор [c.260]

    При нагревании белого фосфора без доступа воздуха он превращается в красный фосфор. При быстром охлаждении паров фосфора получается белый фосфор. Черный фосфор по внешнему виду похож на графит, но в отличие от него является полупроводником. [c.172]

    Плотность. Из всех известных модификаций фосфора, черный фосфор обладает наибольшей плотностью, лежащей по данным различных исследователей в пределах 2,59—2,70 z m . [c.381]

    Свойства. Свойства неорганических полимерных соединений фосфора исследованы довольно широко. Уэлс [1639] рассмотрел кристаллохимию элементов подгруппы 5Б.

Он полагает, что молекулы Р4 и Аз4 в парах имеют форму тетраэдров. Это наблюдается также в кристаллах белого фосфора. Черный фосфор имеет слоистую структуру.

Тиль [1640] подтвердил, что порошку черного фосфора свойственна ромбическая сингония. [c.337]

    Кроме фосфора белого и красного, известен еще черный. Он получается при нагревании белого фосфора до температуры примерно 200°С и под давлением в 12000 ат. Удельный вес его 2,7. Черный фосфор по внешнему виду и по физическим свойствам похож на графит он жирен на ощупь и довольно хорошо проводит элект-рический”Ток. Как и красный, черный фосфор при сильном нагревании возгоняется. Его пары при охлаждении превращаются в белый фосфор. Черный фосфор, как и модификации красного фосфора, имеет атомную кристаллическую решетку. [c.325]

    Черный мышьяк (р-Аз) — блестящая, черная очень хрупкая аморфная масса, плотность 4,7 г/см . Электрический ток не проводит. Аналог черного фосфора. Черный мышьяк при нагревании переходит в -модификацию. [c.453]

    Под давлением 1200 агж и температуре 220° Бриджмен получил из белого фосфора черный. Несколько изменив условия реакции, удалось получить черный аморфный и стекловидный фосфор. А недавно Кребс с сотрудниками получил черный фосфор уже при атмосферном давлении в результате нагревания белой формы в течение пяти суток при 380° в присутствии жидкой ртути.

Все полученные вещества отличаются друг от друга по своим свойствам. Полученный Бриджменом черный фосфор имеет плотность 2,7 г см это самая плотная аллотропная форма фосфора. По внешнему виду он напоминает графит и при нормальных условиях ведет себя как полупроводник со сравнительно небольшой шириной запрещенной зоны 0,3 эв (ширина запрещенной зоны у красного фосфора 1,5 эв).

При высоких давлениях черный фосфор обладает металлической проводимостью. Он нерастворим, менее реакционноспособен, чем другие формы в частности, например, воспламеняется в атмосфере кислорода только при 400°. Красный фосфор воспламеняется в этих же условиях при 250°. Если в течение некоторого времени поддерживать температуру 540°, то черный фосфор переходит в красный.

[c.148]

    Плотность фосфора черного 2.69, белого 1,82 г-см Погрешность данных по X 10—5%,  [c.164]

    Сообщалось, что электролизом реактива Гриньяра были приготовлены фосфины [78]. Для этого электролизу подвергают раствор реактива Гриньяра с анодом из черного фосфора. Черный фосфор готовят нагреванием белого фосфора под давлением 12 ООО ат и температуре несколько сот градусов.

Электролиз ведут в атмосфере азота при плотности тока 0,3—0,5 а/слг . Для получения высокого выхода фосфина рекомендуется использовать избыток маг-нийорганического соединения от 0,5 до 5,0 моль.

В отличие от других методов получения фосфинов описанный метод позволяет вводить в молекулу вторичные и даже третичные углеводородные радикалы. [c.496]

    Действительно, по многим свойствам литий больше похож на магний, чем на остальные щелочные металлы например, литий, как и магний, легко реагирует с азотом н углеродом с образованием нитрида и карбида.

Бериллий больше похож иа алюминий, чем а магний и щелочноземельные металлы оксид и гидроксид бериллия амфотериы, как оксид н гидрооксид алюминия, в то время как оксид и гидроксид магния проявляют исключительно основные свойства.

В виде простого вещества бор больше похож Иа кремний, чем на типичный металл алюминий. Одна из аллотропных модификаций фосфора — черный фосфор — по электрическим свойствам схожа с графитом, в то время как твердый илн жидкий азот — типичный изолятор. По окислнтельиы.

м свойствам хлор гораздо ближе к кислороду, чем к фтору. Действительно, реакция [c.120]

    Свойства. Черный фосфор устойчив на воздухе. Концентрированная азотная кислота (d 1,4) действует на него со взрывом и врспламенением. Концентрированная серная кислота при температуре около 150 С восстанавливается до SO2.

3- и 6%-ный пероксид водорода реагирует при нагревании с черным фосфором несколько быстрее, чем с красным, а пары брома или его раствор в бензоле действуют на черную модификацию медленнее, чем на красную. 8-часовое нагреэание до 560 °С вызывает превращение в красный фосфор.

Черный фосфор кристаллизуется в ромбической системе и образует слоистую решетку. Он имеет свойства полупроводника, d 2,7. [c.552]

    Фосфор образует несколько аллотропических модификаций. Белый фосфор — мягкое кристаллическое вещество, состоит из молекул 4, ядовит, хорошо растворим в сероуглероде (растворитель).

При нагревании белого фск ф6ра образуется красный фосфор, который в отличие от белого ие ядовит и не растворяется в сероуглероде. Наиболее химически устойчивая модификация фосфора — черный фосфор.

[c.86]

    Фосфор продавали дороже золота. Только тогда, когда способ получения фосфора стал известен многим и перестал быть секретом, т. е. в XVIII в., химики начали систематически изучать его свойства. В 1740-х годах Маргграф предложил способ получения фосфорной кислоты, Шееле в 1771 г.

показал, что фосфор можно получить из золы костей. В начале 1770-х годов Лавуазье установил элементарную природу фосфора, а русский ученый Л. А. Мусии-Пушкин открыл его аллотропную форму— фиолетовый фосфор. В 1839 г. было разработано первое фосфорное удобрение — суперфосфат. Еще через 9 лет австрийский химик А.

Шреттер при нагревании белого фосфора до 250 С в ат1 осфере оксида углерода обнаружил новую аллотропическую модификацию этого элемента — красный фосфор, который нашел широкое применение в производстве спичек. В XX в. американский физик П.

Бриджмен получил еще одну аллотропную форму фосфора — черный фосфор, отличающийся хорошей тепло- и электропроводностью. [c.194]

    По схеме на первый взгляд кажется, что слоистая атомная решетка также не обеспечивает нормальных ковалентных углов, так как в правильном равностороннем шестиугольнике углы равны 120° вместо 100°. Но это кажется только потому, что мы рассматриваем плоскую схему, т. е.

как бы проекцию структуры на плоскость, забывая о третьем измерении пространства (вспомним плоскую структурную формулу молекулы Sg и истинный перспективный вид этой молекулы).

Если использовать третье измерение пространства, плоскую сетку рисунка можно несколькими способами деформировать так, что углы в шестиугольных ячейках ее получат произвольное заданное значение, в частности 100°. Существует несколько вариантов такой деформации.

Один из них реализован согласно рентгеновскому исследованию в структуре отдельного слоя атомно-слоистой решетки наиболее устойчивой из модификаций фосфора — черного фосфора. Сходство черного фосфора с гра-< )итом теперь не покажется читателю случайным, если он сравнит решетки обоих веществ и уяснит зависимость физических свойств графита от строения его решетки (рис. 144). [c.477]

    Для металлов характерно, что все они при обычной температуре находятся в твердом состоянии. Только ртуть и галлий представляют исключение. Все металлы обладают характерным металлическим блеском, который обусловлен особым характером отражения падающих на тело световых лучей.

Металлы обладают металлическим блеском только в том случае, если они образуют компактную массу (в кусках) мелко раздробленные металлы теряют свой блеск. Только магний и алюминий и в мелко раздробленном состоянии сохраняют свой блеск (алюминиевая бронза). Это свойство обнаруживается и у некоторых неметаллов.

Например, графит, иод, одна из разновидностей фосфора (черный), разновйдность селена обладают металлическим блеском, хотя их неметаллическая природа не вызывает сомнения. [c.314]

Учебник общей химии (1981) — [ c.278 ]

Химия (1978) — [ c.177 ]

Большой энциклопедический словарь Химия изд.2 (1998) — [ c.629 ]

Справочник Химия изд.2 (2000) — [ c.351 ]

Прогресс полимерной химии (1965) — [ c.328 , c.331 ]

Курс неорганической химии (1963) — [ c.675 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) — [ c.0 ]

Прогресс полимерной химии (1965) — [ c.328 , c.331 ]

Общая химия и неорганическая химия издание 5 (1952) — [ c.252 ]

Неорганическая химия (1974) — [ c.258 , c.260 ]

Неорганическая химия Издание 2 (1976) — [ c.308 ]

Учебник общей химии 1963 (0) — [ c.257 ]

Неорганическая химия (1987) — [ c.493 , c.565 ]

Технология экстракционной фосфорной кислоты (1972) — [ c.7 ]

Общая химия (1974) — [ c.156 , c.194 ]

Технология минеральных удобрений (1974) — [ c.118 ]

Химическое равновесие и скорость реакций при высоких давлениях Издание 3 (1969) — [ c.85 , c.247 ]

Правило фаз Издание 2 (1964) — [ c.402 ]

Справочник по общей и неорганической химии (1997) — [ c.60 , c.176 ]

Технология минеральных удобрений и солей (1956) — [ c.95 ]

Технология минеральных удобрений Издание 3 (1965) — [ c.122 ]

Правило фаз Издание 2 (1964) — [ c.402 ]

Курс неорганической химии (1972) — [ c.605 ]

Химия высокомолекулярных соединений (1950) — [ c.494 ]

Неорганические полимеры (1965) — [ c.0 ]

Курс общей химии (0) — [ c.279 ]

Курс общей химии (0) — [ c.279 ]

Основы общей химии том №1 (1965) — [ c.433 ]

Предмет химии (0) — [ c.279 ]

Источник: https://www.chem21.info/info/17311/

Фосфор

1.1.3. Черный фосфор.

Фосфор Свойства атома Химические свойства Термодинамические свойства простого вещества Кристаллическая решётка простого вещества
Атомный номер 15
Внешний вид простого вещества Белый фосфор- белый, восковидный,слегка фосфоресцирующий
Атомная масса (молярная масса) 30,973762 а. е. м. (г/моль)
Радиус атома 128 пм
Энергия ионизации (первый электрон) 1011,2(10,48) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s2 3p3
Ковалентный радиус 106 пм
Радиус иона 35 (+5e) 212 (-3e) пм
Электроотрицательность (по Полингу) 2,19
Электродный потенциал 0
Степени окисления 5, 3, -3
Плотность (белый фосфор)1,82 г/см³
Молярная теплоёмкость 21,6[1] (ромбич.) Дж/(K·моль)
Теплопроводность (0,236) Вт/(м·K)
Температура плавления 317,3 K
Теплота плавления 2,51 кДж/моль
Температура кипения 553 K
Теплота испарения 49,8 кДж/моль
Молярный объём 17,0 см³/моль
Структура решётки кубическая, объёмноцентрированная
Параметры решётки 18,800 Å
Отношение c/a
Температура Дебая n/a K
P15
30,973762
[Ne]3s23p3
Фосфор

Фосфор — один из самых распространённых элементов земной коры, его содержание составляет 0,08—0,09 % её массы. В свободном состоянии не встречается из-за высокой химической активности.

Образует около 190 минералов, важнейшими из которых являются апатит Ca5(PO4)3(F,Cl,OH) фосфорит Ca3(PO4)2 и другие. Фосфор содержится во всех частях зелёных растений, ещё больше его в плодах и семенах (см. фосфолипиды).

Содержится в животных тканях, входит в состав белков и других важнейших органических соединений (АТФ), является элементом жизни.

История

Схема атома фосфора

Фосфор открыт гамбургским алхимиком Хеннигом Брандом в 1669 году. Подобно другим алхимикам, Бранд пытался отыскать эликсир жизни или философский камень, а получил светящееся вещество.

Несколько позже фосфор был получен другим немецким химиком — Иоганном Кункелем.

Независимо от Бранда и Кункеля фосфор был получен Р. Бойлем, описавшим его в статье «Способ приготовления фосфора из человеческой мочи», датированной 14 октября 1680 года и опубликованной в 1693 году.

Усовершенствованный способ получения фосфора был опубликован в 1743 году Андреасом Маргграфом.

Существуют данные, что фосфор умели получать еще арабские алхимики в XII в.

То, что фосфор — простое вещество, доказал Лавуазье.

Происхождение названия

В 1669 году Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём». Вторичное название «фосфор» происходит от греческих слов «фос» — свет и «феро» — несу. В древнегреческой мифологии имя Фосфор (или Эосфор, греч. Φώσφορος) носил страж Утренней звезды.

Получение

Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре 1600 °С:

  • 2Ca3(PO4)2 + 10C + 6SiO2 → P4 + 10CO + 6CaSiO3.

Образующиеся пары белого фосфора конденсируются в приёмнике под водой. Вместо фосфоритов восстановлению можно подвергнуть и другие соединения, например, метафосфорную кислоту:

  • 4HPO3 + 12C → 4P + 2H2 + 12CO.

Физические свойства

Элементарный фосфор в обычных условиях представляет собой несколько устойчивых аллотропических модификаций; вопрос аллотропии фосфора сложен и до конца не решён. Обычно выделяют четыре модификации простого вещества — белую, красную, черную и металлический фосфор.

Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные являются разновидностью указанных четырёх. В обычных условиях существует только три аллотропических модификации фосфора, а в условиях сверхвысоких давлений — также металлическая форма.

Все модификации различаются по цвету, плотности и другим физическим характеристикам; заметна тенденция к резкому убыванию химической активности при переходе от белого к металлическому фосфору и нарастанию металлических свойств.

Аллотропические модификации фосфора

Белый фосфор

Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок) с температурой плавления 44,1 °С. По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий.

Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствии воздуха под слоем очищенной воды или в специальных инертных средах. Химически белый фосфор чрезвычайно активен. Например, белый фосфор медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение).

Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией). Белый фосфор не только активен химически, но и весьма ядовит (вызывает поражение костей, костного мозга, некроз челюстей) и легкорастворим в органических растворителях. Летальная доза белого фосфора для взрослого мужчины составляет 0,05—0,1 г.

Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м³.

Жёлтый фосфор

Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильноядовитое (ПДК 0,03 мг/м³), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета. Удельный вес 1,83 г/см³, плавится при +34 °C, кипит при +280 °C.

В воде не растворяется, на воздухе легко окисляется и самовоспламеняется. Горит ослепительным ярко-зеленым пламенем с выделением густого белого дыма — мелких частичек декаоксида тетрафосфора P4O10[2].

Несмотря на то, что в результате реакции между фосфором и водой (4Р + 6Н2О → РН3 + 3Н3РО2) выделяется ядовитый газ фосфин (РН3), для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твердое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания желтый фосфор хранится и перевозится под слоем воды (раствора хлорида кальция).

Красный фосфор

Красный фосфор, также называемый фиолетовым фосфором, — это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

Красный фосфор имеет формулу (Р4)n и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления красного фосфора, имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии — тёмно-фиолетовый с медным оттенком металлический блеск.

Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В.

Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). На воздухе красный фосфор воспламеняется при высоких температурах (при переходе в белую форму во время возгонки), и у него полностью отсутствует явление хемолюминесценции.

Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде.

При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре. При «отмокании» — промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

Чёрный фосфор

Чёрный фосфор — это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые чёрный фосфор был получен в 1914 году американским физиком П. У.

Бриджменом из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м³) плотность. Для проведения синтеза чёрного фосфора Бриджмен применил давление в 2·109 Па (20 тысяч атмосфер) и температуру около 200 °С.

Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С.

Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях.

Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Удивительным свойством чёрного фосфора является его способность проводить электрический ток и свойства полупроводника.

Температура плавления чёрного фосфора 1000 °С под давлением 18·105 Па.

Металлический фосфор

При 8,3·1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см³, а при дальнейшем повышении давления до 1,25·1011 Па — ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см³. Металлический фосфор очень хорошо проводит электрический ток.

Химические свойства

Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией. Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность резко снижается. Белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.

В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

Взаимодействие с простыми веществами

Фосфор легко окисляется кислородом:

  • 4P + 5O2 → 2P2O5 (с избытком кислорода),
  • 4P + 3O2 → 2P2O3 (при медленном окислении или при недостатке кислорода).

Взаимодействует со многими простыми веществами — галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

с металлами — окислитель, образует фосфиды:

  • 2P + 3Ca → Ca3P2,
  • 2P + 3Mg → Mg3P2.

с неметаллами — восстановитель:

  • 2P + 3S → P2S3,
  • 2P + 3Cl2 → 2PCl3.

Не взаимодействует с водородом.

Взаимодействие с водой

Взаимодействует с водой, при этом диспропорционирует:

  • 4Р + 6Н2О → РН3 + 3Н3РО2 (фосфатная кислота).

Взаимодействие со щелочами

В растворах щелочей диспропорционирование происходит в большей степени:

  • 4Р + 3KOH + 3Н2О → РН3 + 3KН2РО2.

Восстановительные свойства

Сильные окислители превращают фосфор в фосфорную кислоту:

  • 3P + 5HNO3 + 2H2O → 3H3PO4 + 5NO;
  • 2P + 5H2SO4 → 2H3PO4 + 5SO2 + 2H2O.

Реакция окисления также происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

  • 6P + 5KClO3 → 5KCl + 3P2O5

Применение

Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Его вместе с тонко измельчённым стеклом и клеем наносят на боковую поверхность коробка. При трении спичечной головки в состав который входят хлорат калия и сера, происходит воспламенение.

Элементарный фосфор

Пожалуй, первое свойство фосфора, которое человек поставил себе на службу, — это горючесть. Горючесть фосфора очень велика и зависит от аллотропической модификации.

Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень часто применяется (в зажигательных бомбах и пр.).

Красный фосфор — основная модификация, производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, топлив, а также противозадирных смазочных материалов, в качестве газопоглотителя в производстве ламп накаливания.

Соединения фосфора в сельском хозяйстве

Фосфор (в виде фосфатов) — один из трёх важнейших биогенных элементов (NPK), участвует в синтезе АТФ. Большая часть производимой фосфорной кислоты идёт на получение фосфорных удобрений — суперфосфата, преципитата, аммофоски и др.

Соединения фосфора в промышленности

Фосфаты широко используются:

в качестве комплексообразователей (средства для умягчения воды),
в составе пассиваторов поверхности металлов (защита от коррозии, например, т. н. состав «мажеф»),

Фосфатные связующие

Способность фосфатов формировать прочную трёхмерную полимерную сетку используется для изготовления фосфатных и алюмофосфатных связок

Биологическая роль соединений фосфора

Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита 3Са3(РО4)3·CaF2. В состав зубной эмали входит фторапатит.

Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D. Суточная потребность человека в фосфоре 800-1500 мг.

При недостатке фосфора в организме развиваются различные заболевания костей.

Токсикология элементарного фосфора

Красный фосфор практически нетоксичен. Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.
Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50-150 мг. Попадая на кожу, белый фосфор дает тяжелые ожоги.

Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2-3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем.

Первая помощь при остром отравлении — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать пораженные участки растворами медного купороса или соды. ПДК паров фосфора в воздухе 0,03 мг/м³.

Токсикология соединений фосфора

Некоторые соединения фосфора (фосфин) очень токсичны. Боевые отравляющие вещества зарин, зоман, табун являются соединениями фосфора.

Дополнительная информация

Соединения фосфора

Источник: http://himsnab-spb.ru/article/ps/p

118 элементов. Глава 15: свет из мочи

1.1.3. Черный фосфор.

Элемент: фосфор (Phosphorus)

Химический символ: P

Порядковый номер: 15

Год открытия: 1669  (признан элементом А.Лавуазье в 1777)

Стандартная атомная масса: 30.973761998(5

Температура плавления: 317.3 К (белый), 860 К (красный)

Температура кипения: 553 К (белый)

Плотность при стандартных условиях:  1.83 г/cм3(белый), 2.2-2.34 г/cм3(красный), 2.36 г/cм3(фиолетовый), 2.69 г/cм3(черный)

Число стабильных изотопов: 1

Кристаллическая решётка: зависит от аллотропной модификации

Начнем с истории

В истории химических элементов фосфор занимает совершенно уникальное место. Как-никак, а это первый химический элемент, который имеет точную дату открытия.

Удивительно, но эту дату мы знаем точнее, чем даты рождения и смерти его первооткрывателя, немецкого алхимика Хеннига Бранда, который родился где-то около 1630 года, а умер то ли около 1692, то ли около 1710…  Зато мы точно знаем, что в 1669 году этот человек, сначала бывший солдатом во время Тридцатилетней войны, но благоразумно решивший, что быть врачом и алхимиком безопаснее, решился на попытку добыть философский камень из мочи. Ибо другие варианты, видимо, уже были исчерпаны до него. Ну и гомеопатический принцип подобия (впрочем, гомеопатии-то как раз тогда не было еще): в золото может превращать нечто золотистого цвета. А что плохо пахнет – ну так можно несколько дней отстоять, чтобы запах ушел.  Потом эту мочу можно кипятить до состояния пасты. Тоже желтого цвета. Вот как раз нагревая эту пасту (фактически, кипятя ее несколько часов), у Бранда внезапно получилось некоторое белое вещество, похожее на воск, которое ярко светилось в темноте.

Картина Джозефа Райта «Алхимик, открывающий фосфор» (1771 год), предположительно описывающая открытие фосфора Хеннигом Брандом.

Так был открыт phosphorus mirabilis, «чудесный  носитель света». Или белый фосфор.  14 октября 1680 года датируется получение фосфора тем же способом Робертом Бойлем.

В российских источниках пишется, что это открытие было независимым, однако мы знаем, что сначала Бранд попытался сохранить свой рецепт в тайне, но затем продал его некоему Д. Краффту из Дрездена, который встречался с Робертом Бойлем… В общем, пошло-поехало, и секрет белого фосфора растекся по Европе.

 Кстати, именно Бойль использовал впервые белый фосфор, 13-й химический элемент, известный человечеству, для того, чтобы зажечь деревянные палочки с серными наконечниками – предтечи современных спичек.

Роберт  Бойль

Нужно сказать, что именно фосфор часто становится первым элементом, на котором знакомятся с аллотропией – существованием разных форм простого вещества одного и того же химического элемента. Но сначала – немного об исторически первой аллотропной модификации.

Свечение белого фосфора

Белофосфорные штудии: собака Баскервилей, спичечная забастовка и запрещенное оружие

И давайте сразу  же сделаем лирическое отступление, точнее – отступление литературное.

Я хочу раз и навсегда, закрыть тему белого фосфора и литературного произведения, из которого о нем все узнают, а потом на уроках химии тыкают пальцем и гыгычут: смотрите, какой тупой был Конан Дойл, а на химических олимпиадах просят найти, где же великий автор ошибся.

Итак, внимание, три цитаты:

«Это была собака исполинских размеров, черная, как уголь, и такого ужасного вида, который, наверное, никогда не представлялся глазам человеческим. Из пасти вырывалось пламя, глаза сверкали огнем, как раскаленные угли, морда, загривок и грудь сверкали точно объятые пламенем».

«Это была не чистокровная ищейка и не чистокровный мастиф, а, видимо, помесь – поджарый, страшный пес величиной с молодую львицу. Его огромная пасть все еще светилась голубоватым пламенем, глубоко сидящие дикие глаза были обведены огненными кругами. Я дотронулся до этой светящейся головы и, отняв руку, увидел, что мои пальцы тоже засветились в темноте.

– Фосфор, – сказал я.

– Да, и какой-то особый препарат, – подтвердил Холмс, потянув носом.

Без запаха, чтобы у собаки не исчезло чутье».

«А вот эта паста в жестянке – тот самый светящийся состав, которым он смазывал своего пса. Его натолкнуло на эту мысль не что иное, как легенда о чудовищной собаке Баскервилей, и он решил разделаться таким способом с сэром Чарльзом».

В журнале «Иностранная литература» публикуется«лингвистическое» исследование некоего Давида Иоффе, где он возмущенно пишет:

«Но «фосфор» в русском переводе – это ошибка переводчика. По-английски фосфор (химический элемент) – phosphorus, что можно проверить в любом словаре, xоть англо-русском, xоть русско-английском. В оригинале же «Собаки Баскервилей» фигурирует не phosphorus, а phosphor».

И далее с превосходством знатока говорится, что phosphor по-английски означает любой люминофор, форсфоресцирующее вещество, а Конан-Дойл, безусловно, знал об опасности белого фосфора.

И все тут вроде бы ясно, если бы не одно но: в оригинале (я не нашел изначальный Strand Magasine, но нашел с десяток других изданий), везде из уст Ватсона звучит: «“Phosphorus,” I said».

Так что же, Конан-Дойл не знал об опасности белого фосфора?

Нет, конечно. Лондонский врач  в 1901 году не мог не помнить события 1888 года,  когда на Лондонской спичечной фабрике вспыхнула забастовка.

На этой немного ужасающей иллюстрации Томаса Мюттера середины XIX века под убранными художниками щеками девушки мы видим заболевание, которое сейчас не встретишь: «фосфорная челюсть». Или, если быть точным – фосфорный некроз челюсти.

В XIX веке это было профессиональное заболевание сотрудников спичечных фабрик, поскольку эти люди работали с белым фосфором, токсичной аллотропной модификацией этого простого вещества.

Спички с белым фосфором просуществовали недолго: только в 1830 году их придумал француз Шарль Сориа, а в 1836 году усовершенствовал венгр Янош Ирини, сделав их более безопасными.

Уже в 1855 году швед Йохан Лундстрем придумал «шведские» спички с красным фосфором, но вплоть до 1910-х годов спички с белым фосфором пользовались популярностью (в первую очередь – у производителей, поскольку они были дешевле), а рабочие спичечных фабрик получали вот такой вот некроз челюсти.

2 июля 1888 года после увольнения одной из работниц Лондонской спичечной фабрики началась забастовка работниц, сопровождавшаяся демонстрацией. Это событие вошло в мировую историю и культуру настолько, что в 1960-х годах был даже поставлен мьюзикл «Девочки-спичечницы» (The Matchgirls) по следам тех событий.

Шум поднялся знатный, и администрации фабрики в итоге пришлось-таки пойти на уступки, сотрудницам даже выделили специальные чистые комнаты для приема пищи – ведь именно прямое попадание белого фосфора в рот во время еды и приводило к некрозу челюсти.

А Анни Безант продолжила борьбу против спичек с белым фосфором.

И, в итоге, в 1901 году  (году начала выхода «Собаки Баскервилей» в журнале)  фабрика, производящая белофосфорные спички была закрыта, в 1908 году Палата общин Великобритании приняла акт, запрещающий использование белого фосфора в спичках после 31 декабря 1910 года.

Однако никто из пытавшихся разобраться в ситуации, не увидел следующего предложения, не очень точно переводившегося на русский. Вот точные слова Холмса: «A cunning preparation of it».

То есть, Ватсон, в простоте своей говорит: «Это типа фосфор?», на что химик-Холмс поправляет: «Нет, какое-то хитрое соединение его».

  Он сразу намекает, что тут – некое производное фосфора, точно не пахнущее, а вероятно, и не токсичное, но сохранившее способность к свечению.

Ну и раз мы заговорили о белом фосфоре, то для того, чтобы закрыть эту тему, скажем, что именно белый фосфор лежит в основе одного из самых опасных типов зажигательных боеприпасов, которые сейчас запрещены к применению, если от них могут пострадать гражданские (а это происходит почти всегда, ибо белый фосфор горит с температурой 1300 градусов, ядовит и прочая, и прочая, и прочая). Правда, США и Израиль их не подписали – и фосфорные боеприпасы, к сожалению, применялись и в Афганистане, и в Газе, и даже на Донбассе, хотя США и Израиль тут ни при чем.

Применение фосфорной бомбы авиацией США во Вьетнаме

Все цвета фосфора

Но вернемся к нашим аллотропам. Помимо белого (он же жёлтый – если неочищенный), который представляет молекулы P4,нам известны:

Белый фосфор

Молекула белого фосфора

Красный фосфор, образующийся из белого нагреванием до 300 градусов. Самая часто используемая форма фосфора.

Красный фосфор

Структура красного фосфора

Фиолетовый фосфор, он же моноклинный фосфор, он же металлический фосфор Хитторфа. Получен в 1865 году немецким химиком Йоханном Вильгельмом Хитторфом нагреванием в запаянной трубке красного фосфора до 530 градусов.

Вильгельм Хитторф

В ампуле слева – красный, справа – фиолетовый фосфор

Структура фиолетового фосфора

Черный фосфор получается нагреванием белого под давлением в 12 000 атмосфер.

Черный фосфор

Структура черного фосфора

Фосфорен– двумерный аллотроп фосфора, аналог графена. Как и графен, его можно получить, оторвав скотчем один молекулярный слой от черного фосфора.

Способ получения фосфорена

Синий фосфор– еще один «двумерный» фосфор, который сумели получить только в 2016 году методом молекулярно-пучковой эпитаксии.

Наностержни P12– и такое бывает!

Дифосфор– молекулы P2, содержащие тройную связь. Аналог молекулярного азота до недавнего времени можно было получить только в экстремальных условиях, однако в 2006 году химики сумели вытащить двухатомную молекулу фосфора при нормальных условиях из комплексов вольфрама и ниобия.

Фосфор – жизнь…

Насколько распространены и важны для нас минералы фосфора говорит сам за себя один факт: далеко не один город назван в их честь. Но, конечно, Апатиты – это самый известный.

Без фосфорных удобрений невозможно сельское хозяйство.

Без пищевой добавки Е338, она же – ортофосфорная кислота, не получится Кока-Кола…  Да что говорить,   АТФ, он же аденозинтрифосфат – универсальный источник энергии в нашем организме.

АТФ

За открытие механизма его синтеза в нашем организме Пол Бойер и Джон Уокер (не путать с виски!) получили в 1997 году Нобелевскую премию по химии… Огромное количество статей, книг и научных конференций посвящено химии этой молекулы (а также ее варианту АДФ – аденозиндифосфату и АМФ – аденозинмонофосфату). Не будем уже говорить и о том, что в носителе генетической информации, дезоксирибонуклеиновой кислоте, нуклеотиды – «буквы» генетического кода, химической связью соединены через остатки фосфорной кислоты (а две цепочки ДНК друг с другом удерживает уже водородная связь)…

Структура ДНК

Так что фосфор не зря включают, наряду с углеродом, водородом, азотом и кислородом в число пяти важнейших элементов для жизни. Однако…

Фосфор – смерть…

Говоря о соединениях фосфора, нельзя не сказать и о военном применении содержащих фосфор веществ.  Собственно говоря, про сам белый фосфор мы уже сказали.  Но после Солсбери, шпилей и «новичка» никак нельзя не упомянуть и вершину химического оружия – то, что часто называют «нервно-паралитическими газами», хотя в нормальном состоянии почти все эти вещества – жидкости.

Первое фосфорорганическое вещество (ФОВ), которое действует на нервную систему, было создано в 1936 году в гитлеровской Германии. Как водится – случайно.

Группа Герхарда Шредера (кстати, в итоге дожившего до 1990 года), работала над созданием инсектицидов (напомним, что печально знаменитый «Циклон Б» создавался Фрицем Габером тоже не для газовых камер, а для сельского хозяйства).

Шрадер при взаимодействии хлорокиси фосфора с диметиламином, этанолом и цианистым калием синтезировал этиловый эфир диметиламида цианофосфорной кислоты, «вещество 9/91». Эффективность нового инсектицида была убойной, он получил товарное название «табун».

Табун

В январе 1937 года при работе с табуном произошёл несчастный случай: банка с жидкостью оказалась неплотно закрытой, и капля табуна упала на лабораторный стол. В лаборатории находились сам Шрадер и его лаборант.

В течение нескольких минут после разлива у обоих развилось головокружение и спёртость дыхания, сопровождавшиеся резким сужением зрачка (классическая триада отравлением ФОВ).

На выздоровление у ученых ушло три недели, но ещё раньше они поспешили исполнить закон об обороне от мая 1935 года и сообщить куда надо о том, что инсектицид способен эффективно убивать не только насекомых – с описанием клинической картины.

Вместо выговора за несоблюдение техники безопасности Шрадер получил новую лабораторию и 50 тысяч марок за открытие нового способа умерщвления себе подобных. Он с энтузиазмом взялся за работу – и уже очень скоро было готово новое вещество, которое было в 10 раз токсичнее табуна. Его назвали акронимом по буквам фамилий исследователей:  Schrader, Ambros, Gerhard Ritter, von der Linde. Получился зарин.

Зарин

А там и нобелевские лауреаты подтянулись. В 1939 году Рихарду Куну присудили премию 1938 года за работы с витаминами. В тот год химик уже мог даже не надеяться подержать в руках заветный приз.

После присуждения Нобелевской премии мира 1935 года немецкому журналисту Карлу фон Осецкому «за борьбу с милитаризмом в Германии», Адольф Гитлер запретил своим подданным принимать эту награду.

Впрочем, в 1949 году в Стокгольме Куна чествовали как ни в чем не бывало.

Рихард Кун

Надо сказать, что наш герой удивительно легко отделался во время существования Третьего рейха. Был обласкан чинами, общался с верхушкой рейха. Сказали избавиться от коллабораторов-евреев — перестал с ними работать.

Дали команду разработать отравляющие вещества — а что тут такого? Так что, если бы Германия решилась применить созданный Куном в 1944 году зоман (фосфорорганическое боевое отравляющее вещество, «прадедушка “Новичка”»), кто знает, не оказался бы Кун вместо Стокгольма в 1949 году в Нюрнберге в 1945-м…

Да-да, вы не ослышались – тот самый «новичок» (если он действительно был удачен и существовал) – является самым совершенным потомком фосфорорганических отравляющих веществ, которые повсеместно запрещены как химическое оружие, но по-прежнему применяются как инсектициды. Дихлофос знаете? То-то же!

Алексей Паевский

Источник: https://mendeleev.info/elements/p/

Происхождение названия

В 1669 году Хеннинг Бранд при нагревании смеси белого песка и выпаренной мочи получил светящееся в темноте вещество, названное сначала «холодным огнём». Вторичное название «фосфор» происходит от греческих слов «φώς» — свет и «φέρω» — несу. В древнегреческой мифологии имя Фосфор (или Эосфор, др.-греч. Φωσφόρος) носил страж Утренней звезды.

Получение

Фосфор получают из апатитов или фосфоритов в результате взаимодействия с коксом и кремнезёмом при температуре около 1600 °С:

 2Ca3(PO4)2 + 10C + 6SiO2 → P4 + 10CO + 6CaSiO3  или Ca3(PO4)2 + 3SiO2+5C = 3CaSiO3+5CO+2P.

Образующиеся пары фосфора конденсируются в приёмнике под слоем воды в аллотропическую модификацию в виде белого фосфора. Вместо фосфоритов для получения элементарного фосфора можно восстанавливать углём и другие неорганические соединения фосфора, например, в том числе, метафосфорную кислоту:

 4HPO3 + 10C → P4 + 2H2O + 10CO

Физические свойства

Элементарный фосфор при нормальных условиях существует в виде нескольких устойчивых аллотропических модификаций. Все существующие аллотропные модификации фосфора пока (2016 г.) до конца не изучены. Традиционно различают четыре его модификации: зеленовато-белый, красный, чёрный и металлический фосфор.

Иногда их ещё называют главными аллотропными модификациями, подразумевая при этом, что все остальные описываемые модификации являются смесью этих четырёх.

При стандартных условиях устойчивы только три аллотропических модификации фосфора (например, белый фосфор термодинамически неустойчив (квазистационарное состояние) и переходит со временем при нормальных условиях в красный фосфор). В условиях сверхвысоких давлений термодинамически устойчива металлическая форма элемента.

Все модификации различаются по цвету, плотности и другим физическим и химическим характеристикам, особенно по химической активности. При переходе состояния вещества в более термодинамически устойчивую модификацию снижается химическая активность, например, при последовательном превращении белого фосфора в красный, потом красного в чёрный (металлический).

Аллотропные модификации фосфора (белый, красный, чёрный)

Белый фосфор

Белый фосфор представляет собой белое вещество (из-за примесей может иметь желтоватый оттенок). По внешнему виду он очень похож на очищенный воск или парафин, легко режется ножом и деформируется от небольших усилий.

Белый фосфор имеет молекулярную кристаллическую решётку, формула молекулы белого фосфора — P4, причём атомы расположены в вершинах тетраэдра. Отливаемый в инертной атмосфере в виде палочек (слитков), он сохраняется в отсутствии воздуха под слоем очищенной воды или в специальных инертных средах.

Плохо растворяется в воде, но легкорастворим в органических растворителях. Растворимостью белого фосфора в сероуглероде пользуются для промышленной очистки его от примесей. Плотность белого фосфора из всех его модификаций наименьшая и составляет около 1823 кг/м³. Плавится белый фосфор при 44,1 °C. В парообразном состоянии происходит диссоциация молекул фосфора.

Химически белый фосфор чрезвычайно активен. Например, он медленно окисляется кислородом воздуха уже при комнатной температуре и светится (бледно-зелёное свечение). Явление такого рода свечения вследствие химических реакций окисления называется хемилюминесценцией (иногда ошибочно фосфоресценцией). При взаимодействии с кислородом белый фосфор горит даже под водой.

Белый фосфор не только активен химически, но и весьма ядовит: летальная доза белого фосфора для взрослого человека составляет 0,05—0,15 г, а при хроническом отравлении поражает кости, например, вызывает омертвение челюстей. При контакте с кожей легко самовоспламеняется, вызывая серьёзные ожоги.

Под действием света, при нагревании до не очень высоких температур в безвоздушной среде, а также под действием ионизирующего излучения белый фосфор превращается в красный фосфор.

Жёлтый фосфор

Неочищенный белый фосфор обычно называют «жёлтый фосфор». Сильно ядовитое (ПДК в атмосферном воздухе 0,0005 мг/м³), огнеопасное кристаллическое вещество от светло-жёлтого до тёмно-бурого цвета.

Плотность 1,83 г/см³, плавится при +43,1 °C, кипит при +280 °C. В воде не растворяется, на воздухе легко окисляется и самовоспламеняется.

Горит ослепительным ярко-зелёным пламенем с выделением густого белого дыма — мелких частичек декаоксида тетрафосфора P4O10.

Так как фосфор реагирует с водой лишь при температуре свыше 500 °C, то для тушения фосфора используют воду в больших количествах (для снижения температуры очага возгорания и перевода фосфора в твёрдое состояние) или раствор сульфата меди (медного купороса), после гашения фосфор засыпают влажным песком. Для предохранения от самовозгорания жёлтый фосфор хранится и перевозится под слоем воды (раствора хлорида кальция).

Красный фосфор

Красный фосфор — это более термодинамически стабильная модификация элементарного фосфора. Впервые он был получен в 1847 году в Швеции австрийским химиком А. Шрёттером при нагревании белого фосфора при 500 °С в атмосфере угарного газа (СО) в запаянной стеклянной ампуле.

Красный фосфор имеет формулу Рn и представляет собой полимер со сложной структурой. В зависимости от способа получения и степени дробления, красный фосфор имеет оттенки от пурпурно-красного до фиолетового, а в литом состоянии — тёмно-фиолетовый с медным оттенком, имеет металлический блеск.

Химическая активность красного фосфора значительно ниже, чем у белого; ему присуща исключительно малая растворимость. Растворить красный фосфор возможно лишь в некоторых расплавленных металлах (свинец и висмут), чем иногда пользуются для получения крупных его кристаллов. Так, например, немецкий физико-химик И. В.

 Гитторф в 1865 году впервые получил прекрасно построенные, но небольшие по размеру кристаллы (фосфор Гитторфа). Красный фосфор на воздухе не самовоспламеняется, вплоть до температуры 240—250 °С (при переходе в белую форму во время возгонки), но самовоспламеняется при трении или ударе, у него полностью отсутствует явление хемилюминесценции.

Нерастворим в воде, а также в бензоле, сероуглероде и других веществах, растворим в трибромиде фосфора. При температуре возгонки красный фосфор превращается в пар, при охлаждении которого образуется в основном белый фосфор.

Ядовитость его в тысячи раз меньше, чем у белого, поэтому он применяется гораздо шире, например, в производстве спичек (составом на основе красного фосфора покрыта тёрочная поверхность коробков). Плотность красного фосфора также выше, и достигает 2400 кг/м³ в литом виде.

При хранении на воздухе красный фосфор в присутствии влаги постепенно окисляется, образуя гигроскопичный оксид, поглощает воду и отсыревает («отмокает»), образуя вязкую фосфорную кислоту; поэтому его хранят в герметичной таре.

При «отмокании» — промывают водой от остатков фосфорных кислот, высушивают и используют по назначению.

Чёрный фосфор

Чёрный фосфор — это наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Впервые чёрный фосфор был получен в 1914 году американским физиком П. У.

 Бриджменом из белого фосфора в виде чёрных блестящих кристаллов, имеющих высокую (2690 кг/м³) плотность. Для проведения синтеза чёрного фосфора Бриджмен применил давление в 2⋅109 Па (20 тысяч атмосфер) и температуру около 200 °С.

Начало быстрого перехода лежит в области 13 000 атмосфер и температуре около 230 °С.

Чёрный фосфор представляет собой чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, и с полностью отсутствующей растворимостью в воде или органических растворителях.

Поджечь чёрный фосфор можно, только предварительно сильно раскалив в атмосфере чистого кислорода до 400 °С. Чёрный фосфор проводит электрический ток и имеет свойства полупроводника.

Температура плавления чёрного фосфора 1000 °С под давлением 1,8⋅106 Па.

Металлический фосфор

При 8,3⋅1010 Па чёрный фосфор переходит в новую, ещё более плотную и инертную металлическую фазу с плотностью 3,56 г/см³, а при дальнейшем повышении давления до 1,25⋅1011 Па — ещё более уплотняется и приобретает кубическую кристаллическую решётку, при этом его плотность возрастает до 3,83 г/см³. Металлический фосфор очень хорошо проводит электрический ток.

Химические свойства

Химическая активность фосфора значительно выше, чем у азота. Химические свойства фосфора во многом определяются его аллотропной модификацией.

Белый фосфор очень активен, в процессе перехода к красному и чёрному фосфору химическая активность снижается.

Белый фосфор в воздухе при окислении кислородом воздуха при комнатной температуре излучает видимый свет, свечение обусловлено фотоэмиссионной реакцией окисления фосфора.

В жидком и растворенном состоянии, а также в парах до 800 °С фосфор состоит из молекул Р4. При нагревании выше 800 °С молекулы диссоциируют: Р4 = 2Р2. При температуре выше 2000 °С молекулы распадаются на атомы.

Взаимодействие с простыми веществами

Фосфор легко окисляется кислородом:

 4P + 5O2 → 2P2O5 (с избытком кислорода) 4P + 3O2 → 2P2O3  (при медленном окислении или при недостатке кислорода)

Взаимодействует со многими простыми веществами — галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства:

с металлами — окислитель, образует фосфиды:

 2P + 3Ca → Ca3P2 

фосфиды разлагаются водой и кислотами с образованием фосфина

с неметаллами — восстановитель:

 2P + 3S → P2S3 2P + 5Cl2 → 2PCl5

С водородом фосфор практически не соединяется. Однако разложением некоторых фосфидов водой по реакции, например:

 Ca3P2 + 6H2O → 2PH3 + 3Ca(OH)2

может быть получен аналогичный аммиаку фосфористый водород (фосфин) — PH3

Взаимодействие с водой

Взаимодействует с водяным паром при температуре выше 500 °С, протекает реакция диспропорционирования с образованием фосфина и фосфорной кислоты:

 8P + 12H2O →>500oC  5PH3 + 3H3PO4

Реакция взаимодействия красного фосфора и воды с образованием ортофосфорной кислоты и водорода. Реакция протекает при температуре 700—900 °C. Катализатором могут выступать: платина, медь, титан, цирконий.

 2P + 8H2O →700−900oC,kat   2H3PO4 + 5H2 

Взаимодействие со щелочами

В холодных концентрированных растворах щелочей также медленно протекает реакция диспропорционирования:

 4P + 3KOH + 3H2O →τ   PH3 + 3KH2PO2

Восстановительные свойства

Сильные окислители превращают фосфор в фосфорную кислоту:

 3P + 5HNO3 + 2H2O → 3H3PO4 + 5NO  2P + 5H2SO4 → 2H3PO4 + 5SO2 + 2H2O 

Реакция окисления фосфора происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль:

 6P + 5KClO3 → 5KCl + 3P2O5

Изотопы

Основная статья: Изотопы фосфора

Известно более 20 изотопов фосфора (с массовым числом от 24 до 47). Природный изотоп 31P стабилен. Из радиоактивных изотопов наиболее долгоживущие: 30P (T1/2 = 2,5 мин), 32P (T1/2 = 14,26 сут) и 33P (T1/2 = 25,34 сут)..

Применение

Фосфор является важнейшим биогенным элементом и в то же время находит очень широкое применение в промышленности. Красный фосфор применяют в производстве спичек. Его вместе с тонко измельчённым стеклом и клеем наносят на боковую поверхность коробки. При трении спичечной головки, в состав которой входят хлорат калия и сера, происходит воспламенение.

Элементарный фосфор

Пожалуй, первое свойство фосфора, которое человек поставил себе на службу, — это горючесть. Горючесть фосфора очень велика и зависит от аллотропической модификации.

Наиболее активен химически, токсичен и горюч белый («жёлтый») фосфор, потому он очень часто применяется (в зажигательных бомбах и пр.).

Красный фосфор — основная модификация, производимая и потребляемая промышленностью. Он применяется в производстве спичек, взрывчатых веществ, зажигательных составов, различных типов топлива, а также противозадирных смазочных материалов, в качестве газопоглотителя в производстве ламп накаливания.

Соединения фосфора в сельском хозяйстве

Фосфор (в виде фосфатов) — один из трёх важнейших биогенных элементов, участвует в синтезе АТФ. Большая часть производимой фосфорной кислоты идёт на получение фосфорных удобрений — суперфосфата, преципитата, аммофоски и др.

Соединения фосфора в промышленности

Фосфаты широко используются:

  • в качестве комплексообразователей (средства для умягчения воды),
  • в составе пассиваторов поверхности металлов (защита от коррозии, например, т. н. состав «мажеф»).

Фосфатные связующие

Способность фосфатов формировать прочную трёхмерную полимерную сетку используется для изготовления фосфатных и алюмофосфатных связок.

                   Черный (металлический) фосфор

Фосфор присутствует в живых клетках в виде орто- и пирофосфорной кислот, входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, коферментов, ферментов. Кости человека состоят из гидроксилапатита 3Ca3(PO4)2·Ca(OH)2.

В состав зубной эмали входит фторапатит. Основную роль в превращениях соединений фосфора в организме человека и животных играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D.

При недостатке фосфора в организме развиваются различные заболевания костей.

Суточная потребность в фосфоре составляет:

  • для взрослых 1,0—2,0 г
  • для беременных и кормящих женщин 3—3,8 г
  • для детей и подростков 1,5—2,5 г

При больших физических нагрузках потребность в фосфоре возрастает в 1,5—2 раза.

Усвоение происходит эффективнее при приёме фосфора вместе с кальцием в соотношении 3:2 (P:Ca).

Некоторые источники:

Продукт, мг/100 г
Очищенное конопляное семя1650
Семена тыквы (ядра)1233
Семена подсолнечника (ядра) поджаренные1158
Семена мака870
Горчичный порошок828
Кунжут (очищенный)774
Семена дыни (ядра)755
Какао-порошок734
Твёрдый пармезан694
Семена подсолнечника (ядра) сушёные660
Сафлора семена (ядра)644
Семена льна642
Семена лотоса626
Сыр швейцарский нежирный605
Кешью сырые593
Орехи пили575
Амарантовая крупа557
Сыр гауда546
Овёс523
Грецкий орех чёрный513
Печень говяжья тушёная497
Фисташки сырые490
Миндаль481
Киноа457
Люпин, семена440
Карп415
Фасоль407
Арахис397
Сыр рокфор392
Мука из цельного зерна357
Печень куриная297
Вырезка свиная286
Желтоперый тунец278
Сгущённое молоко253
Яйцо198
Говядина188
Курица178

Токсикология элементарного фосфора

  • Красный фосфор практически нетоксичен (токсичность ему придают примеси белого фосфора). Пыль красного фосфора, попадая в легкие, вызывает пневмонию при хроническом действии.
  • Белый фосфор очень ядовит, растворим в липидах. Смертельная доза белого фосфора — 50—150 мг. Попадая на кожу, тлеющий белый фосфор даёт тяжелые ожоги.

Острые отравления фосфором проявляются жжением во рту и желудке, головной болью, слабостью, рвотой. Через 2—3 суток развивается желтуха. Для хронических форм характерны нарушение кальциевого обмена, поражение сердечно-сосудистой и нервной систем.

Первая помощь при остром отравлении — промывание желудка, слабительное, очистительные клизмы, внутривенно растворы глюкозы. При ожогах кожи обработать поражённые участки растворами медного купороса или соды.

ПДК паров фосфора в воздухе производственных помещений — 0,03 мг/м³, временно допустимая концентрация в атмосферном воздухе — 0,0005 мг/м³, ПДК в питьевой воде — 0,0001 мг/дм³.

Токсикология соединений фосфора

Некоторые соединения фосфора (фосфин) очень токсичны. Ввиду высокой (ЛД50 15-100 мг/кг) и чрезвычайно высокой (

Источник: https://chem.ru/fosfor.html

1.1.3. Черный фосфор.: Черный фосфор – термодинамически наиболее устойчивая форма

1.1.3. Черный фосфор.
Черный фосфор – термодинамически наиболее устойчивая форма элементного фосфора. В свою очередь под черным фосфором подразумевают ряд разновидностей: аморфный и кристаллический.

Аморфный черный фосфор получается из белого под действием температур и давления несколько ниже тех, что требуются для получения его кристаллических разновидностей (рис. 1.

1), и представляет собой переходную структуру. 453 473 493

т,к

Рис. 1.1. Области температуры и давления, соответствующие образованию черного фосфора [1]. А – область образования аморфного черного фосфора; Б – область образования аморфного черного фосфора с последующим переходом в кристаллическую форму; В – область непосредственного образования кристаллического черного фосфора

I'

Стекловидный серый фосфор, отличающийся от аморфного черного, может быть выделен как промежуточный продукт при получении

орторомбического черного фосфора. Это форма темно-серого цвета, тяжелая и хрупкая, имеет раковистый излом. Серый фосфор способен воспламеняться от удара, не проводит электрического тока [2].

1,1.4. Красный фосфор.

Красный фосфор – термин, используемый для описания множества различных форм (частично кристаллических), каждая из которых окрашена в красный цвет различной интенсивности. В зависимости от способа получения он может меняться от бледного желтовато-красного до темного фиолетово-красного.

Считают, что множество оттенков красного фосфора может быть связано либо с размером частиц, либо с наличием примесей. По устойчивости и химической активности красные формы занимают промежуточное положение между белой и черной формами, хотя все-таки ближе к последней. Красный фосфор практически нерастворим в известных растворителях.

Он ведет себя как высокополимер, и, в отличие от белого фосфора, не самовоспламеняется, хотя его легче зажечь, чем черный фосфор. Красный фосфор малотоксичен.

В таблице 1.1. приведены свойства красной модификации в сравнении со свойствами белой [2].

Таблица 1.1. Свойства белой и красной модификаций фосфора. Свойство
Белый фосфор
Красный фосфор
Внешний вид
кристаллический,

воскообразный,

прозрачный
аморфный или кристаллический
Температура плавления, К
317,1
585-610
Давление пара
высокое
очень низкое
Плотность, г/см
1,83
2,0-2,4
Растворимость в органических растворителях
Растворим
Нерастворим
Токсичность
ПДКМ.

Р=0,003 мг/м3
нетоксичен или почти нетоксичен
Теплота сублимации, кДж/моль
56,3
126
Воспламенение
Самопроизвольное, при 293 К
При 533 К
Способность к хемилюминесценции
Способен
Неспособен
Запах
Характерный
нет
Строение
Содержит дискретные молекулы Р4
Высокополимер Рп Красный фосфор, получаемый разными методами, обладает различными свойствами. Так при синтезе красного фосфора в растворах молекулы растворителя включаются в структуру полимера [7]. Полагают, что фрагменты растворителя или иные примеси, которые всегда содержатся в различных видах красного фосфора, являются концевыми группами полимерных цепочек [8,9]. Основываясь на установленной в работе [10] высокой пористости красного фосфора, а также учитывая наличие закрытых пор в аморфном красном фосфоре [11], можно заключить, что участие фрагментов и молекул растворителя или примесей в формировании структуры полимера, по-видимому, заключается в образовании химической связи в полимерных молекулах. При хранении без доступа воздуха красный фосфор окисляется ранее сорбированным кислородом с образованием Р4Ою.

Существует множество способов получения красного фосфора. Однако промышленное значение имеют лишь методы, основанные на термическом переделе жидкого белого фосфора или его паров с целью полимеризации в красный. Одним из недостатков существующих методов, помимо низкой скорости превращения и малой производительности, является недостаточно высокое качество продукта.

Это связано с тем, что красный фосфор получается с очень широким диапазоном физико-химических свойств и дисперсного состава, обладает высокой чувствительностью к удару и трению, дефектной структурой. Образование дефектных структур объясняется тем, что одной из стадий получения технического красного фосфора является механическая обработка продукта (дробление) [12, 13].

Кроме способов полимеризации белого фосфора, основанных на переходе БФ-»КФ при повышенной температуре, существуют и другие варианты, описанные в работах [14, 15]. Среди них, прежде всего, следует выделить методы получения красного фосфора с использованием инициирующих добавок.

Ускоряющее действие оказывают I2, Br2, Cl2, S, Se, некоторые органические соединения [16]. Все они 4 действуют только на первой стадии полимеризации (стадия инициирования).

Добавку после окончания процесса невозможно извлечь экстракцией, что говорит о включении инициирующей добавки в структуру красного фосфора.

Источник: https://bookucheba.com/neorganicheskaya-himiya_840/113-chernyiy-fosfor-11887.html

Book for ucheba
Добавить комментарий