2. ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ЗОН ЗАРАЖЕНИЯ СДЯВ

Определение размеров зон заражения сдяв

2. ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ЗОН ЗАРАЖЕНИЯ СДЯВ

Согласно РД 52.04.

253-90 после сбора первичной информации об объекте (общееколичество химических веществ на объекте, их номенклатура, условия размещения и хранения на объекте), приступают к прогнозированию условий возможной аварии, при этом за величину возможного выброса Q принимается его содержание в максимальной по объему единичной емкости; метеоусловия – неблагоприятными (наличие инверсии, скорость ветра опасная – 1 м/с) (для прогноза масштабов загрязнения непосредственно после аварии в расчетах используют реальные условия, сложившиеся на объекте).

Процесс заражения объекта в условиях аварии подразделяют на две стадии: образование первичного и вторичного облака.

Первичное облако – облако загрязняющего вещества, образующееся в результате мгновенного (1–3 мин) перехода в атмосферу части содержимого емкости при ее разрушении. Вторичное облако –облако загрязняющего вещества, образующееся в результате испарения разлившегося вещества на подстилающей поверхности.

Сложность расчетов процесса рассеивания и многообразие реальных условий и факторов, влияющих на размеры зон рассеивания, приводят к необходимости принять ряд упрощающих допущений:

–все содержимое разрушившейся емкости поступает в окружающую среду;

–толщина слоя свободно разлившейся жидкости h постоянна и составляет 0,05 м (РД 52.04.253-90);

–толщина слоя жидкости, поступившей в поддон, h = Н – 0,2м, где Н – высота поддона, м;

– толщина слоя жидкости, поступившей в общий поддон от нескольких источников (емкостей, трубопроводов, аппаратов и т.п.); h=Qo/(Fd) где Qo–общая масса разлившегося (выброшенного) при аварии вещества, т; F–реальная площадь разлива в поддон, м2 (обычно площадь поддона); d–плотность разлившегося вещества, г/м3 .

При авариях на газо- и продуктопроводах выброс СДЯВ принимается равным максимальному количеству СДЯВ, содержащемуся в трубопроводе между автоматическими отсекателями, например, для аммиакопроводов эта величина составляет примерно 275.. 500 т.

Для расчета масштабов загрязнения определяют количественные характеристики загрязняющего вещества по их эквивалентным значениям. Под эквивалентой массой СДЯВ понимается такое содержание хлора, масштаб заражения которым при инверсии эквивалентен масштабу заражения при данной степени вертикальной устойчивости атмосферы количеством СДЯВ, перешедшим в первичное (вторичное) облако.

Эквивалентное количество вещества по первичному облаку

Qэ1 = K1K3K5K7Qo

где К1 –коэффициент, зависящий от условия хранения загрязняющих веществ; при хранении сжатых газов К1, для сжиженных газов К1=Ср∆Т/чисп (здесь Ср – удельная теплоемкость жидкого вещества, кДж/(кг∙град); ∆Т–разность температур жидкого вещества до и после разрушения сосуда, °С; чисп – удельная теплота испарения жидкого вещества при температуре испарения, кДж/кг); K3 –коэффициент, равный отношению пороговой токсодозы хлора к пороговой токсодозе выброшенного вещества; K5– коэффициент, учитывающий степень вертикальной устойчивости атмосферы (для инверсии принимается равным 1, для изотермии 0,23, для конверсии 0,08); K7коэффициент, учитывающий влияние температуры воздуха (для сжатых газов K7 = 1); Qo – масса выброшенного (выпираемого) при аварии вещества, т.

Количество выброшенного (вылившегося) вещества определяется по объему разрушившейся емкости или секции трубопровода, находящейся между автоматическими задвижками. Для емкостей со сжатым газом Qo=dVx для трубопроводов Qo=ndVx/100, где Vx–объем секции газопровода (емкости),м3; п–содержание ядовитого химического вещества в природном газе, %.

Эквивалентная масса вещества по вторичному облаку

где К2–коэффициент, зависящий от физико-химических свойств вещества (табл. П.2.1.) или К2= 8,1∙10-6 Р√М (здесь Р–давление насыщенного пара вещества при заданной температуре воздуха,мм рт. ст; М – молекулярная масса вещества; К4 – коэффициент, учитывающий скорость ветра.

Таблица П.2.1. Характеристика некоторых СДЯВ и вспомогательные коэффициенты для определения глубины зоны заражения

СДЯВ   Плотность СДЯВ, т/м3 газ   tкип ˚C Поро   Значения коэффициентов  
говая токсо-доза   К1   K2   K3   K7 для температуры воздуха, 0 С  
– 40   –20  
жидкость  
  NH3   HF     HCl   NОx     HS     Фос   F   Cl     0,0008   – 33,42     19,52     – 85,10         – 60,35     8,2   – 188,2     – 34,1             1,5     16,1   0,6   0,2   0,6   0,18       0,28       0,27   0,05   0,95   0,18     0,25   0,028     0,037   0,04     0,042   0,061   0,038   0,52     0,04   0,15     0,3   0,4     0,036   1,0   3,0   1,0     0,9     0,1     0,4         0,3     0,1     0,7     0,9     0,3     0,2     0,6         0,5     0,3     0,8     0,3     0,6     0,5     0,8     0,4     0,8     0,7     0,9     0,6     1,4         1,2         1,2     2,7     1,1   1,4  
0,681     – –
0,989   0,0016  
1,191     – – –
1,491 0,0015    
0,964     0,0035  
1,432     0,0017  
1,512     0,0032  
1,553  

Примечание. Полный список СДЯВ см. РД 52.04.253-90.

Ниже приведены значения коэффициента К4, учитывающего скорость ветра:

Скорость ветра, м/с
К4……….. 1,0 1,33 1,67 2,0 2,34 2,67 3,0 3,34 3,67 4,0

Коэффициент, зависящий от времени N, прошедшего после начала аварии,

где Т–время полного испарения, ч; T=hd/(K2K4K7); при Т< 14 K6 принимается для 1 ч; N – время, прошедшее после аварий.

Если время, прошедшее после аварии, меньше времени, необходимого для полного испарения пролитого вещества, то в расчетах вместо N используется время полного испарения [T=hd/(K2K4K7)];

Глубину зоны заражения первичным (вторичным) облаком СДЯВ при авариях на технологических емкостях, хранилищах и транспорте рассчитывают, используя данные табл. П.3.2. В ней приведены максимальные значения глубины заражения первичным Г1 или вторичным Г2 облаком СДЯВ. определяемой в зависимости от эквивалентной массы вещества и скорости ветра

Полная глубина зоны заражения Г (км), обусловленная воздействием первичного и вторичного облака СДЯВ,

Г=Г΄+1,5Г´´

где Г΄ –наибольший и Г” –наименьший из размеров глубины зоны заражения

Таблица П.2.2 Глубина зоны заражения, км

u. м/с   Эквивалентная масса СДЯВ, т  
0,01   0,1   1,0   КЮО  
0,38   1,25   4,75   19,20   81,91  
0,22   0,68   2,17   7,96   31,30  
0,17   0,53   1,68   5,53   20,82   83,6  
0,14   0,45   1,42   4,49   16,16   63,16  
0,12   0,40   1,25   3,96   13,50   51,6  
0,11   0,36   1,13   3,58   11,74   44,15  
0,10   0,33   1,04   3,29   10,48   38,90  
> 15   0,10   0,31   0,92   3,07   9,70   34,98  

Полученное значение сравнивают с предельно возможным значением глубины переноса воздушных масс (км)

Гп=Nv

где v– скорость переноса переднего фронта зараженного воздуха при данных скорости ветра и степени вертикальной устойчивости воздуха, км/ч (табл. П. 2.3).

За окончательную расчетную глубину зоны заражения принимается меньшее из двух сравниваемых между собой значений.

Площадь зоны возможного заражения (км2 ) для первичного (вторичного) облака СДЯВ

где Г– глубина зоны заражения,км; φ–угловые размеры зоны возможного заражения, определяемые в зависимости от скорости ветра по следующим данным:

u, м/с …… 2

φ°. ……. 360 180 90 45

Таблица П. 2.3. Скорость переноса переднего фронта облака

Состояние атмосферы   Скорость ветра, м/с [», М/С  
Инверсия Изотермия Конверсия   – –   –   –   –   –   –   –  

Площадь зоны фактического заражения (км2 )

гдеКsкоэффициент, зависящий от степени вертикальной устойчивости воздуха; при инверсии Ks=0,081; при изотермии 0,133, при конверсии –0,235.

Время подхода облака СДЯВ к заданному объему зависит от скорости переноса облака воздушным потоком

t=X/v,

где Х – расстояние от источника заражения до заданного объекта, км; v – скорость переноса переднего фронта облака зараженного воздуха, км/ч.

Прогнозирование глубины зоны заражения при разрушении химически опасного объекта производится в предположении одновременности выброса суммарного запаса СДЯВ на объекте и наличии неблагоприятных метеорологических условий (инверсия, скорость ветра 1 м/с). В этом случае суммарная эквивалентная масса СДЯВ:

где K2i–коэффициент, зависящий от физико-химических свойств i-го СДЯВ; K3i– коэффициент, равный отношению пороговой токсодозы хлора к пороговой токсодозе i-го СДЯВ; K6i – коэффициент, зависящий от времени, прошедшего после поступления i-го вещества в атмосферу; К7i–поправка на температуру для i-го СДЯВ; Qi–запасы i-го СДЯВ на объекте, т; diплотность i-го СДЯВ, т/м3.

Полученные согласно табл. П.2.2 глубины зон заражения Г в зависимости от рассчитанного значения O3 и скорости ветра сравнивают с предельно возможным значением глубины переноса воздушных масс Гп. За окончательную расчетную глубину зоны заражения принимают меньшее из двух сравниваемых между собой значений.

Для ориентировочного, быстрого определения глубины распространения СДЯВ в условиях городской застройки можно пользоваться данными табл. П.2.4.

Таблица П. 2.4 Ориентировочные значения глубины (км) распространения некоторых СДЯВ в условиях городской застройки при инверсии и скорости ветра 1 м/с

Масса СДЯВ, т   Аммиак   Хлор   Синильная кислота  
5 25 50 100   0,5/01 1,3/0,4 2,1/0,6 3,4/1,0   4/0.9 11,5/2.5 18/3.8 30/6,3   24/1.8 7,1/5.5 12/9 18/14  

Примечания. 1. В числителе указано расстояние для поражающей, в знаменателе смертельной концентрации. 2. Табличные значения уменьшаются при изотермии в 1,3 раза; при конверсии в 1,6 раза. 3. При скорости ветра более 1 м/с применяются следующие поправочные коэффициенты:

Скорость ветра, м/с ….. 1  
Поправочный коэффициент . 1   2,1   3,7   2,9   4,3   4,6  

Таблица П. 2.5. Возможные потери людей в очаге химического заражения, %

Условия нахождения людей   Без противогазов   При обеспеченности людей противогазами, %  
На открытой местности   90… 100  
В простейших укрытиях  

Ширина зоны химического заражения СДЯВ приближенно может быть определена по степени вертикальной устойчивости атмосферы и по колебаниям направления ветра: при инверсии принимается 0,03 глубины зоны; при изотермии –0,15, при конверсии –0,8, при устойчивом ветре (колебания не более шести градусов)–0,2; при неустойчивом ветре –0,8 глубины зоны. При этом к ширине добавляются линейные размеры места разлива СДЯВ.

Возможные потери рабочих, служащих и населения в очаге химического поражения (Р, %) определяют по данным табл П. 2.5.

Ориентировочная структура потерь людей в очаге химического поражения составит: легкой степени – 25% средней и тяжелой степени (с выходом из строя не менее, чем на 2…3 недели и нуждающихся в госпитализации) –40%, со смертельным исходом –35%.

Просмотров 238 Эта страница нарушает авторские права

Источник: https://allrefrs.ru/2-35493.html

Защита в чрезвычайных ситуациях и ликвидация последствий. Определение размеров зон заражения СДЯВ

2. ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ЗОН ЗАРАЖЕНИЯ СДЯВ

Государственное образовательное учреждение высшего профессионального образования

Московский государственный строительный университет

Факультет ИСТАС

Заочное отделение

БЕЗОПАСТНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

РЕФЕРАТ

Тема: Защита в чрезвычайных ситуациях и ликвидация

последствий. Определение размеров зон заражения СДЯВ.

Выполнил: Живаев М.С.

группы 49/4 С

Москва

2013 

Введение 3

1 Защита в чрезвычайных ситуациях и ликвидация последствий 4

2 Определение размеров зон заражения СДЯВ 12

Заключение 17

Список использованных источников 18

Введение

В настоящее время проблема обеспечения безопасности жизнедеятельности становится все более актуальной. Наше общество начинает осознавать, что дальнейшее развитие человечества и технический прогресс требуют от каждого человека более высокого уровня знаний и культуры в указанной области.

На поверхности Земли и в прилегающих к ней слоях атмосферы происходит множество сложнейших физических, физико–химических, биохимических, геодинамических, гелиофизических, гидродинамических и других процессов, сопровождающихся обменом и взаимной трансформацией различных видов энергии. Россия, имеющая чрезвычайно большое разнообразие геологических, климатических и ландшафтных условий, подвержена воздействию более 30 видов опасных природных явлений.

Кроме природных опасностей, существует огромное количество опасностей техногенного характера, разрушительное воздействие которых не уступает природным.

Целью данной работы является изучение защиты в чрезвычайных ситуациях и ликвидации их последствий, а также рассмотрение методики определения размеров зоны заражения СДЯВ.

1 Защита в чрезвычайных ситуациях и ликвидация последствий

Защита персонала объектов экономики и населения от чрезвычайных ситуаций – это совокупность взаимосвязанных по времени, ресурсам и месту проведения мероприятий Российской Системы Чрезвычайных Ситуаций (РСЧС), направленных на предотвращение или предельное снижение экономического ущерба, потерь производственного персонала, населения и угрозы их жизни и здоровью от поражающих факторов и воздействий источников чрезвычайной ситуации (ЧС).

Организация защиты базируется на определенных принципах и способах ее осуществления.

В настоящее время основные принципы защиты населения и территорий от чрезвычайных ситуаций определены Федеральным Законом “О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера”. Выделим основные:

1. Мероприятия, направленные на предупреждение ЧС, а также на максимально возможное снижение ущерба и потерь в случае их возникновения, должны проводиться ЗАБЛАГОВРЕМЕННО.

Пожалуй, главную роль в предупреждении ЧС играют мониторинг и прогнозирование.

Под мониторингом понимается система постоянного наблюдения за явлениями и процессами, происходящими в природе и техносфере, для предвидения нарастающих угроз для человека и среды его обитания.

Главной целью мониторинга является предоставление данных для точного и достоверного прогноза чрезвычайных ситуаций на основе объединения интеллектуальных, информационных и технологических возможностей различных ведомств и организаций, занимающихся наблюдением за отдельными видами опасностей.

Мониторинговая информация служит основой для прогнозирования, в результате которого получают гипотетические данные о будущем состоянии какого–либо объекта, явления, процесса.

Прогнозирование чрезвычайной ситуации – это опережающее предположение о вероятности возникновения и развития чрезвычайной ситуации на основе анализа причин ее возникновения и ее источника в прошлом и настоящем.

Главным в этом процессе является информация об объекте прогнозирования, раскрывающая его поведение в прошлом и настоящем, а также закономерности этого поведения. В основе всех методов, способов и методик прогнозирования лежат эвристический и математический подходы.

Суть эвристического подхода состоит в изучении и использовании мнений специалистов–экспертов. Этот подход применяется для прогнозирования процессов, формализовать которые нельзя.

Математический подход заключается в использовании данных о некоторых характеристиках прогнозируемого объекта после их обработки математическими методами для получения зависимости, связывающей эти характеристики со временем, и вычислении с помощью найденной зависимости характеристик объекта в заданный момент времени. Этот подход предполагает активное применение моделирования или экстраполяции.

Огромный потенциал в деле снижения рисков чрезвычайных ситуаций заключается в использовании для оперативного информирования и оповещения населения комплексной системы, включающей в себя федеральные, региональные и местные информационные центры, соединенные с различными оконечными устройствами отображения информации.

Такими устройствами в местах массового пребывания людей наружные и внутренние электронные табло с видеокамерами (для обеспечения обратной связи и профилактического наблюдения).

В других местах оконечными устройствами могут служить мобильные телефоны, портативные компьютеры с беспроводным выходом в Интернет, бытовые радио- и телеприемники. На указанные устройства может выводиться информация о возможных чрезвычайных ситуациях, характере их поражающих факторов, правилах безопасного поведения, сигналы оповещения.

Наличие обратной связи позволяет в этом случае осуществлять интерактивный процесс обучения, а также профилактическое наблюдение и мониторинг мест массового пребывания людей.

Информация о прогнозируемых и возникших чрезвычайных ситуациях, их последствиях, о состоянии радиационной, химической, медико–биологической, взрывной, пожарной и экологической безопасности на соответствующих территориях должна быть правдивой и своевременной. Сокрытие, несвоевременное представление, либо представление заведомо ложной информации недопустимо и влечет за собой ответственность в соответствии с законодательством Российской Федерации.

2. Планирование и осуществление мероприятий по защите населения и территорий от ЧС должны проводиться с учетом экономических, природных и иных характеристик, особенностей территорий и степени реальной опасности возникновения ЧС.

3.

Объем и содержание мероприятий по защите населения и территорий от ЧС должны определяться, исходя из принципа необходимой достаточности и максимально возможного использования имеющихся сил и средств.

 Принцип достаточности имеет важное экономическое значение. Не всегда увеличение затрат ведет к пропорциональному этим затратам возрастанию надежности защиты, а иногда и нет в этом необходимости.

4.

Ликвидация ЧС должна осуществляться силами и средствами организации, органов местного самоуправления, органов исполнительной субъектов Российской Федерации, на территории которых сложилась чрезвычайная ситуациях. При недостаточности вышеуказанных сил и средств в установленном законодательством Российской Федерации порядке привлекаются силы и средства федеральных органов исполнительной власти.

Привлечение тех или иных сил и средств для ликвидации чрезвычайных ситуации (последствий аварий, катастроф или стихийных бедствий) определяется масштабами чрезвычайных ситуаций.

Защита населения в ЧС (по ГОСТ 22.0.02.-94) складывается из ряда мероприятий. Рассмотрим их подробнее:

– своевременное оповещение об угрозе возникновения ЧС, радиоактивного, химического, бактериологического (биологического) заражения, катастрофического затопления, а также о крупных производственных авариях, катастрофах и стихийных бедствиях;

– комплексное применение основных способов защиты – укрытие в защитных сооружениях, проведение эвакуации, рассредоточения, использование средств индивидуальной защиты (СИЗ) и медицинских средств индивидуальной защиты;

– проведение аварийно-спасательных и других неотложных работ в очагах поражения;

– обучениенаселения по гражданской обороне (УМЦ ГО, курсы ГО).

Основными способами защиты населения от чрезвычайных ситуаций являются:

  • укрытие людей в приспособленных под нужды защиты населения помещениях производственных, общественных и жилых зданий, а также в специальных защитных сооружениях. Защитные сооружения – это сооружения, специально предназначенные для защиты населения от ядерного, химического и бактериологического (биологического) оружия и обычных средств поражения, а также от поражающих факторов природного и техногенного характера. Эти сооружения подразделяются на убежища, противорадиационные укрытия (ПРУ) и простейшие.
  • эвакуация населения из зон ЧС. Эвакуация – комплекс мероприятий по организованному выводу и (или) вывозу персонала и населения из зон чрезвычайной ситуации, а также жизнеобеспечение эвакуированных в районе размещения. Под рассредоточением понимают организованный вывоз из городов и других населенных пунктов и размещение в загородной зоне свободной от работы смены рабочих и служащих объектов, продолжающих работу в военное время. Эвакуация – это организованный вывоз или вывод из городов и других населенных пунктов и размещение в загородной зоне остального населения, а также вывоз или вывод населения из зон возможного затопления. В отличии от рассредоточения эвакуированные постоянно проживают в загородной зоне до особого распоряжения.
  • использование средств индивидуальной защиты органов дыхания и кожных покровов;
  • проведение мероприятий медицинской защиты;
  • проведение аварийно-спасательных и других неотложных работ в зонах ЧС.

Ликвидация ЧС включает проведение в зоне ЧС и в прилегающих к ней районах силами и средствами ликвидации чрезвычайных ситуаций всех видов разведки и неотложных работ, а также организацию жизнеобеспечения пострадавшего населения и личного состава этих сил.

Организация ликвидации ЧС зависит от их характера и масштабов, а также от последствий. Основным организатором ликвидации ЧС является комиссия по чрезвычайным ситуациям – функциональная структура органа исполнительной власти и органа управления объектом народного хозяйства.

Органы управления ГО ЧС, являясь структурным органом исполнительной власти, предназначены для повседневного управления и контроля в пределах своей компетенции за выполнением мероприятий по ГО, предупреждению ЧС и готовностью к действиям при их возникновении, а также для организации ликвидации ЧС на подведомственной территории.Российская система предупреждения и действий в чрезвычайных ситуациях представлена на рис.1.

Используя прогностические данные о возможных ЧС в определенном подведомственном районе (объекте), их характере и масштабах орган управления ГО ЧС составляет план ликвидации ЧС, который может предусматривать:

  • краткую характеристику зоны бедствия (очага поражения); силы и средства, привлекаемые для выполнения задач по ликвидации ЧС; очередность работ;
  • порядок охраны общественного порядка в зоне ЧС;
  • специальные мероприятия с учетом специфики района (территории, объекта);
  • меры медицинского обеспечения;
  • обеспечение безопасности;
  • организацию управления;
  • вопросы материально-техническою обеспечения и др.

Рис.1. Российская система предупреждения и действий в чрезвычайных ситуациях 

Эффективность ликвидации ЧС во многом зависит от экстренности реагирования на них.

Это заключается в осуществлении взаимосвязанных действий органов руководства и повседневного управления РСЧС по незамедлительному получению информации о факте возникновения ЧС, своевременному оповещению об этом населения и заинтересованных организаций, а также уточнению и анализу обстановки, принятию решений и организации действий сил и средств ликвидации ЧС.

2 Определение размеров зон заражения СДЯВ

Растет ассортимент применяемых в промышленности, сельском хозяйстве и быту химических веществ. Некоторые из них токсичны и вредны. При проливе или выбросе в окружающую среду способны вызвать массовые поражения людей, животных, приводят к заражению воздуха, почвы, воды, растений.

Их называют сильнодействующими ядовитыми веществами (СДЯВ). Определенные виды СДЯВ находятся в больших количествах на предприятиях, их производящих или использующих в производстве.

В случае аварии может произойти поражение людей не только непосредственно на объекте, но и за его пределами, в ближайших населенных пунктах.

Аварийно химически опасное вещество (АХОВ) — это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах).

Крупными запасами ядовитых веществ располагают предприятия химической, целлюлозно-бумажной, оборонной, нефтеперерабатывающей и нефтехимической промышленности, черной и цветной металлургии, промышленности минудобрений.

Источник: https://www.freepapers.ru/104/zashhita-v-chrezvychajnyh-situaciyah-i/232751.1599477.list1.html

Book for ucheba
Добавить комментарий