3.2.5. Электрический ток

Содержание
  1. Лекция 12 Постоянный электрический ток 1 2 3
  2. Максимально допустимый ток для медных проводов
  3. Площадь сечения проводки
  4. Расчет мощности в проводке
  5. Сечение проводов для разных условий эксплуатации
  6. Рассеивание тепла при работе кабеля
  7. Выбор сечения провода
  8. Кратковременные режимы работы
  9. Как правильно выбрать вводной провод в квартиру?
  10. Выбор проводки для отдельных групп потребителей
  11. Как рассчитать трехфазную проводку?
  12. Заключение
  13. 3.2.5. Электрический ток
  14. Характер воздействия тока на человека (путь тока рука —нога, напряжение 220 в)
  15. Что такое электрический ток? Основные понятия, характеристики и действия
  16. Рассмотрим работу электровакуумных приборов
  17. Давайте теперь разберёмся в основных характеристиках тока
  18. Опасность электрического тока и другие опасные свойства электричества и техника безопасности
  19. Как обезопасить себя от поражения электрическим током
  20. по теме: что такое электрический ток
  21. 3.2.5. Электрический ток: Действие электрического тока на живую ткань носит разносторонний и
  22. Контрольный тест по физике на тему:
  23. Электрические явления

Лекция 12 Постоянный электрический ток 1 2 3

3.2.5. Электрический ток

Лекция 12. Постоянный электрический ток 1. 2. 3. 4. 5. Электрический ток, сила и плотность тока. Электродвижущая сила. Напряжение. Закон Ома. Сопротивление проводников. Работа и мощность тока. Закон Джоуля-Ленца.

1. Электрический ток, сила и плотность тока l l l Электродинамика – раздел электричества, в котором рассматривается явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел.

Электрическим током называется любое упорядоченное движение электрических зарядов. В проводнике свободные электрические заряды перемещаются: положительные – по полю, а отрицательные – против поля, т. е.

в проводнике возникает электрический ток, называемый током проводимости

Упорядоченное движение электронов в металлическом проводнике и ток I. S – площадь поперечного сечения проводника, E – электрическое поле

Конвекционный ток l Конвекционный ток возникает, если упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела

Условия возникновения электрического тока l l Для возникновения и существования электрического тока необходимо наличие свободных носителей тока – заряженных частиц, способных перемещаться упорядоченно, и наличие электрического поля, энергия которого каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление движения принимают направление движения положительных зарядов

Сила тока l l Сила тока служит количественной мерой электрического тока. Сила тока – скалярная величина, определяемая электрическим зарядом, проходящим через сечение проводника в единицу времени Постоянным называется ток, сила которого и направление не изменяется со временем. Единица силы тока 1 А.

Плотность тока l физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярно направлению тока

Связь силы тока и скорости носителей заряда l скорость упорядоченного движения зарядов в проводнике концентрация носителей носитель имеет элементарный заряд Сила тока l плотность тока l l

2. Электродвижущая сила. Напряжение l Для существования тока в электрической цепи необходимо наличие устройства, способного создавать и поддерживать разность потенциалов

Сторонние силы l l l Силы, действующие на заряды со стороны источников тока, называются сторонними. Сторонние силы действуют лишь внутри источника тока. Сторонние силы могут быть обусловлены химическими процессами (аккумуляторы), изменяющимися магнитными полями и т. д.

Электродвижущая сила l l Электродвижущей силой (ЭДС) называется физическая величина, определяемая работой , совершаемой сторонними силами при перемещении единичного положительного заряда ЭДС, как и потенциал, выражается в вольтах

Напряженность поля сторонних сил l Электродвижущая сила, действующая на участке l напряженность поля сторонних сил

Работа сил при протекании тока l l l При протекании электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны электрического поля и сторонние силы. Работу, совершаемую силами электрического поля по перемещению заряда характеризует разность потенциалов Работа сторонних сил на участке

Напряжение l Напряжением на участке называется физическая величина, определяемая работой, совершаемой суммарным полем электрических (кулоновских) и сторонних сил при перемещении единичного заряда на данном участке цепи

3. Закон Ома. Сопротивление проводников l Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника

Сопротивление l l Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором.

закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. В СИ единицей электрического сопротивления проводников служит ом (Ом).

Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Обобщенный закон Ома l Для участка цепи, содержащего ЭДС, закон Ома IR = U 12 = φ1 – φ2 + Е= Δφ12 + E

Проводимость l электрическая проводимость проводника. Единица проводимости – сименс. 1 См – проводимость проводника сопротивлением 1 Ом.

Физический смысл наличия сопротивления в проводниках l При своем движении в проводнике электроны взаимодействуют с ионами кристаллической решетки металла, отдавая им при столкновениях кинетическую энергию, приобретенную при свободном пробеге.

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем.

Удельное сопротивление l l Для однородного линейного проводника сопротивление прямо пропорционально его длине и обратно пропорционально его поперечному сечению удельное электрическое сопротивление Коэффициент характеризует материал проводника. Единица удельного электрического сопротивления – Ом метр, (Ом м). Наименьшим удельным электрическим сопротивлением обладают серебро (1, 6 108 Ом м) и медь (1, 7 10 -8 Ом м), алюминиевые провода имеют =2, 6 10 -8 Ом м.

Удельная проводимость l l Величина, обратная удельному электрическому сопротивлению называется удельной электрической проводимостью вещества проводника. Единицей удельной электрической проводимости является – сименс, деленный на сантиметр, (См/см).

Зависимость сопротивления от температуры l l Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит, и сопротивления, с температурой описывается линейным законом температурный коэффициент сопротивления, для чистых металлов близкий 1/273 К-1

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

4. Работа и мощность тока l l Напряжение, приложенное к концам однородного проводника Время Заряд Работа

5. Закон Джоуля-Ленца l Если ток проходит по неподвижному металлическому проводнику, то, при отсутствии механической работы и химических превращений, вся работа тока идет на нагревание проводника.

Источник: https://present5.com/lekciya-12-postoyannyj-elektricheskij-tok-1-2-3/

Максимально допустимый ток для медных проводов

3.2.5. Электрический ток

Когда электрический ток протекает по кабелю, часть энергии теряется.

Она уходит на нагрев проводников из-за их сопротивления, с уменьшением которого возрастает величина передаваемой мощности и допустимый ток для медных проводов.

Наиболее приемлемым проводником на практике является медь, которая имеет небольшое электрическое сопротивление, устраивает потребителей по стоимости и выпускается в широком ассортименте.

Следующим металлом с хорошей проводимостью является алюминий. Он дешевле меди, но более ломкий и деформируется в местах соединений. Прежде внутридомовые отечественные сети были проложены алюминиевыми проводами. Их прятали под штукатурку и надолго забывали об электропроводке. Электроэнергия преимущественно уходила на освещение, и провода легко выдерживали нагрузку.

С развитием техники появилось множество электроприборов, которые стали незаменимы в быту и потребовали большего количества электричества. Потребляемая мощность возросла и проводка перестала с ней справляться.

Теперь стало немыслимо делать электроснабжение квартиры или дома без расчета электропроводки по мощности.

Провода и кабели выбираются так, чтобы не было лишних затрат, а они полностью справлялись со всеми нагрузками в доме.

Проходящий электрический ток вызывает нагрев проводника. При повышенной температуре металл быстро окисляется, а изоляция начинает плавиться при температуре от 65 0С. Чем чаще она нагревается, тем быстрее выходит из строя. По этой причине провода выбирают по допустимому току, при котором не происходит их перегрев.

Площадь сечения проводки

По форме провод выполняется в виде круга, квадрата, прямоугольника или треугольника. У квартирной проводки сечение преимущественно круглое. Шина медная устанавливается обычно в распределительном шкафу и бывает прямоугольной или квадратной.

Площади поперечных сечений жил определяются по основным размерам, замеряемым штангенциркулем:

  • круг – S = πd2 / 4;
  • квадрат – S = a2;
  • прямоугольник – S = a * b;
  • треугольник – πr2 / 3.

В расчетах приняты следующие обозначения:

  • r – радиус;
  • d – диаметр;
  • b, a – ширина и длина сечения;
  • π = 3,14.

Расчет мощности в проводке

Мощность, выделяющаяся в жилах кабеля при его эксплуатации, определяется по формуле: P = In2Rn,

где In – нагрузочный ток, А; R – сопротивление, Ом; n – количество проводников.

Формула подходит при расчете одной нагрузки. Если к кабелю их подключено несколько, количество тепла рассчитывается отдельно для каждого потребителя энергии, а затем результаты суммируются.

Допустимый ток для медных многожильных проводов также рассчитывается через поперечное сечение. Для этого необходимо распушить конец, замерить диаметр одной из проволочек, посчитать площадь и умножить на их количество в проводе.

Сечение проводов для разных условий эксплуатации

Сечения проводов удобно измерять в квадратных миллиметрах. Если грубо оценивать допустимый ток, мм2 медного провода пропускает через себя 10 А, при этом не перегреваясь.

В кабеле соседние провода греют друг друга, поэтому для него надо выбирать толщину жилы по таблицам или с поправкой. Кроме того, размеры берут с небольшим запасом в сторону увеличения, а после выбирают из стандартного ряда.

Проводка может быть открытой и скрытой. В первом варианте она прокладывается снаружи по поверхностям, в трубах или в кабель-каналах. Скрытая проходит под штукатуркой, в каналах или трубах внутри конструкций. Здесь условия работы более жесткие, поскольку в закрытых пространствах без доступа воздуха кабель нагревается сильней.

Для разных условий эксплуатации вводятся коэффициенты поправки, на которые следует умножать расчетный длительно допустимый ток в зависимости от следующих факторов:

  • одножильный кабель в трубе длиной более 10 м: I = In х 0,94;
  • три одножильных кабеля в одной трубе: I = In х 0,9;
  • прокладка в воде с защитным покрытием типа Кл: I = In х 1,3;
  • четырехжильный кабель равного сечения: I = In х 0,93.

Пример

При нагрузке в 5 кВт и напряжении 220 В сила тока через медный провод составит 5 х 1000 / 220 = 22,7 А. Его сечение составит 22,7 / 10 = 2,27 мм2.

Этот размер обеспечит допустимый ток для медных проводов по нагреву. Поэтому здесь следует взять небольшой запас 15 %. В результате сечение составит S = 2,27 + 2,27 х 15 / 100 = 2,61 мм2.

Теперь к этому размеру следует подобрать стандартное сечение провода, которое составит 3 мм.

Рассеивание тепла при работе кабеля

Проводник не может разогреваться от проходящего тока бесконечно долго. Одновременно он отдает тепло окружающей среде, количество которого зависит от разности температуры между ними. В определенный момент наступает равновесное состояние и температура проводника устанавливается постоянной.

Важно! При правильно подобранной проводке потери на нагрев снижаются. Следует помнить, что за нерациональный расход электроэнергии (когда провода перегреваются) также приходится платить. С одной стороны плата взимается за лишний расход по счетчику, а с другой – за замену кабеля.

Выбор сечения провода

Для типовой квартиры электрики особенно не задумываются о том, какие сечения проводки выбрать. В большинстве случаев используют такие:

  • вводной кабель – 4-6 мм2;
  • розетки – 2,5 мм2;
  • основное освещение – 1,5 мм2.

Подобная система вполне справляется с нагрузками, если нет мощных электроприборов, к которым порой надо вести отдельное питание.

Отлично подходит для того, найти допустимый ток медного провода, таблица из справочника. В ней также приведены данные расчета при использовании алюминия.

Основой для выбора проводки является мощность потребителей. Если суммарная мощность в линиях от главного ввода P = 7,4 кВт при U = 220 В, допустимый ток для медных проводов составит по таблице 34 А, а сечение – 6 мм2 (закрытая прокладка).

Кратковременные режимы работы

Максимально допустимый кратковременный ток для медных проводов при режимах работы с длительностью циклов до 10 мин и рабочими периодами между ними не более 4 мин приводится к длительному режиму работы, если сечение не превышает 6 мм2. При сечении выше 6 мм2: Iдоп = In∙0,875/√Тп.в.,

где Тп.в – отношение длительности рабочего периода к продолжительности цикла.

Отключение питания при перегрузках и коротких замыканиях определяется техническими характеристиками применяемых защитных автоматов. Ниже приведена схема небольшого щита управления квартиры. Питание от счетчика поступает на вводной автомат DP MCB мощностью 63 А, который защищает проводку до автоматов отдельных линий мощностью 10 А, 16 А и 20 А.

Важно! Пороги срабатывания автоматов должны быть меньше максимально допустимого тока проводки и выше нагрузочного тока. В таком случае каждая линия будет надежно защищена.

Как правильно выбрать вводной провод в квартиру?

Величина номинального тока на кабеле ввода в квартиру зависит от того, сколько подключено потребителей. В таблице приведены необходимые приборы и их мощность.

ЭлектроприборНоминальная мощность, кВт
Телевизор0,18
Бойлер2-6
Холодильник0,2-0,3
Духовой шкаф2-5
Пылесос0,65-1
Электрочайник1,2-2
Утюг1,7-2,3
Микроволновка0,8-2
Компьютер0,3-1
Стиральная машина2,5-3,5
Система освещения0,5
Всего12,03-23,78

Силу тока по известной мощности можно найти из выражения:

I = P∙Kи/(U∙cos φ), где Kи = 0,75 – коэффициент одновременности.

Для большинства электроприборов, являющихся активной нагрузкой, коэффициент мощности cos φ = 1. У люминесцентных ламп, электродвигателей пылесоса, стиральной машины и др. он меньше 1 и его необходимо учитывать.

Длительно допустимый ток для приборов, приведенных в таблице, составит I = 41 – 81 А. Величина получается довольно внушительной. Всегда следует хорошенько подумать, когда приобретаешь новый электроприбор, потянет ли его квартирная сеть. По таблице для открытой проводки сечение входного провода составит 4-10 мм2. Здесь еще надо учитывать, как квартирная нагрузка повлияет на общедомовую.

Возможно, что ЖЭК не позволит подключить столько электроприборов к стояку подъезда, где через распределительные шкафы под каждую фазу и нейтраль проходит шина (медная или алюминиевая). Их просто не потянет электросчетчик, который обычно устанавливается в щите на лестничной площадке.

Кроме того, плата за перерасход нормы электроэнергии вырастет до внушительных размеров из-за повышающих коэффициентов.

Если проводку делать для частного дома, то здесь надо учитывать мощность отводящего провода от главной сети. Обычно используемого алюминиевого провода СИП-4 сечением 12 мм2 может и не хватить для большой нагрузки.

Выбор проводки для отдельных групп потребителей

После того как выбран кабель для подключения к сети и для него подобран защищающий от перегрузок и коротких замыканий автомат ввода, необходимо подобрать провода для каждой группы потребителей.

Нагрузка разделяется на осветительную и силовую. Самым мощным потребителем в доме является кухня, где устанавливаются электроплита, стиральная и посудомоечная машины, холодильник, микроволновка и другие электроприборы.

Для каждой розетки выбираются провода на 2,5 мм2. По таблице для скрытой проводки он пропустит 21 А. Схема снабжения обычно радиальная – от распределительной коробки. Поэтому к коробке должны подходить провода на 4 мм2.

Если розетки соединены шлейфом, следует учитывать, что сечению 2,5 мм2 соответствует мощность 4,6 кВт. Поэтому суммарная нагрузка на них не должна ее превышать.

Здесь есть один недостаток: при выходе из строя одной розетки, остальные также могут оказаться неработоспособными.

На бойлер, электроплиту, кондиционер и другие мощные нагрузки целесообразно подключать отдельный провод с автоматом. В ванную комнату также делается отдельный ввод с автоматом и УЗО.

На освещение идет провод на 1,5 мм2. Сейчас многие применяют основное и дополнительное освещение, где может потребоваться большее сечение.

Как рассчитать трехфазную проводку?

На расчет допустимого сечения кабеля влияет тип сети. Если мощность потребления одинакова, допустимые токовые нагрузки на жилы кабеля для трехфазной сети будут меньше, чем для однофазной.

Для питания трехжильного кабеля при U = 380 В применяется формула:

I = P/(√3∙U∙cos φ).

Коэффициент мощности можно найти в характеристиках электроприборов или он равен 1, если нагрузка активная. Максимально допустимый ток для медных проводов, а также алюминиевых при трехфазном напряжении указывается в таблицах.

Заключение

Для предупреждения перегрева проводников при длительной нагрузке следует правильно рассчитать поперечное сечение жил, от которого зависит допустимый ток для медных проводов. Если мощности проводника будет недостаточно, кабель преждевременно выйдет из строя.

Источник: https://FB.ru/article/253736/maksimalno-dopustimyiy-tok-dlya-mednyih-provodov

3.2.5. Электрический ток

3.2.5. Электрический ток

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое и биологическое действия.

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также многовенного взрывоподобного образования пара из тканевой жидкости и крови.

Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов.

Электротравмы условно разделяют на общие и местные. К общим относят электрический удар, при котором процесс возбуждения различных групп мышц может привести к судорогам, остановке дыхания и сердечной деятельности.

Остановка сердца связана с фибрилляцией —хаотическим сокращением отдельных волокон сердечной мышцы (фибрилл). К местным травмам относят ожоги, металлизацию кожи, механические повреждения, электроофтальмии.

Металлизация кожи связана с проникновением в нее мельчайших частиц металла при его расплавлении под влиянием чаще всего электрической дуги.

Исход поражения человека электротоком зависит от многих факторов: силы тока и времени его прохождения через организм, характеристики тока (переменный или постоянный), пути тока в теле словека, при переменном токе — от частоты колебаний.

Ток, проходящий через организм, зависит от напряжения прикосновения, под которым оказался пострадавший, и суммарного электрического сопротивления, в которое входит сопротивление юла чело. века. Величина последнего определяется в основном сопротивлением рогового слоя кожи, составляющее при сухой коже и отсутспщи повреждений сотни тысяч ом.

Если эти условия состояния кожи не выполняются, то ее сопротивление падает до 1 кОм. При высоком напряжении и значительном времени протекания тока через тело сопротивление кожи падает еще больше, что приводит к более тяжелым последствиям поражения током.

Внутреннее сопротивление тела человека не превышает нескольких сот ом и существенной роли не играет.

На сопротивление организма воздействию электрического тока оказывает влияние физическое и психическое состояние человека. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводят к снижению сопротивления. Характер воздействия тока на человека в зависимости от силы и вида тока приведен в табл. 3.19.

Таблица 3.19.

Характер воздействия тока на человека (путь тока рука —нога, напряжение 220 в)

Ток, мАПеременный ток, 50 ГцПостоянный ток
0,6…1,52,0…2,55,0…7,08,0…10,020,0…25,050,0…80,0 90,0…100,0300,0Начало ощущения, легкое дрожание пальцевНачало болевых ощущенийНачало судорог в рукахСудороги в руках, трудно, но можно оторваться от электродовСильные судороги и боли, неотпускающий ток, дыхание затрудненоПаралич дыханияФибрилляция сердца при действии тока в течение 2—3 с, паралич дыханияТо же, за меньшее времяОщущений нетТо жеЗуд, ощущение нагреваУсиление ощущения нагреваСудороги рук, затруднение дыханияТожеПаралич дыхания при длительном протекании токаФибрилляция сердца через 2— 3 с, паралич дыхания

Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10с — 2 мА, при 10 с и менее — 6 мА. Ток, при котором пострадавший не может самостоятельно оторваться от токоведущих частей, называется неотпускающим.

Переменный ток опаснее постоянного, однако, при высоком на пряжении (более 500 В) опаснее постоянный ток. Из возможных путей протекания тока через тело человека (голова — рука, голова — ноги, рука — рука, нога — рука, нога — нога и т. д.

) наиболее опасен тот, при котором поражается головной мозг (голова—руки, голова-ноги), сердце и легкие (руки —ноги).

Неблагоприятный микроклимат (повышенная температура, влажность) увеличивает опасность поражения током, так как влага (пот) понижает сопротивление кожных покровов.

Таблица 3.20

Предельно-допустимые уровни напряжения и тока

Род токаНорми-руемая величи-наПредельно-допустимые уровни, не более, при продолжительность воздействия тока, Ia, с
0,01-0,080,10,20,30,40,50,60,70,80,91,0Св.1,0
Постоянный,50 ГцUa, BIa, мА6505002501651251008570655550366
Переменный,400 ГцUa, BIa, мА650500500330250200170140100110100368
ПостоянныйUa, BIa, мА6505004003503002502402302202102004015
Выпрямлен-ный двух-полупериодныйUa, B650500400300270230220210200190180
Выпрямлен-ный одно-полупериодныйUa, B650500400300250200190180170160150

При гигиеническом нормировании ГОСТ 12.1.038—82* устанавливает предельно допустимые напряжения прикосновения и токи, протекающие через тело человека (рука —рука, рука —нога) при нормальном (неаварийном) режиме работы электроустановок производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц (табл. 3.20).

Источник: https://studfile.net/preview/2974513/page:29/

Что такое электрический ток? Основные понятия, характеристики и действия

3.2.5. Электрический ток

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов.

Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое.

Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой.

Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10-31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента.

Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно.

Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет.

Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет.

Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1.  Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет.

Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают.

Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).

Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок.

Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

Закон Ома

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

Закон Ватта

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах.

Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер.

Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В).

Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ).

Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются.

Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться.

Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

по теме: что такое электрический ток

Источник: https://meanders.ru/tok.shtml

3.2.5. Электрический ток: Действие электрического тока на живую ткань носит разносторонний и

3.2.5. Электрический ток

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое и биологическое действия.

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также многовенного взрывоподобного образования пара из тканевой жидкости и крови.

Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов.

Электротравмы условно разделяют на общие и местные. К общим относят электрический удар, при котором процесс возбуждения различных групп мышц может привести к судорогам, остановке дыхания и сердечной деятельности.

Остановка сердца связана с фибрилляцией – хаотическим сокращением отдельных волокон сердечной мышцы (фибрилл). К местным травмам относят ожоги, металлизацию кожи, механические повреждения, электроофтальмии.

Металлизация кожи связана с проникновением в нее мельчайших частиц металла при его расплавлении под влиянием чаще всего электрической дуги.

Исход поражения человека электротоком зависит от многих факторов: силы тока и времени его прохождения через организм, характеристики тока (переменный или постоянный), пути тока в теле человека, при переменном токе – от частоты колебаний.

Ток, проходящий через организм, зависит от напряжения прикосновения, под которым оказался пострадавший, и суммарного электрического сопротивления, в которое входит сопротивление тела человека. Величина последнего определяется в основном сопротивлением рогового слоя кожи, составляющее при сухой коже и отсутствии повреждений сотни тысяч ом.

Если эти условия состояния кожи не выполняются, то ее сопротивление падает до 1 кОм. При высоком напряжении и значительном времени протекания тока через тело сопротивление кожи падает еще больше, что приводит к более тяжелым последствиям поражения током.

Внутреннее сопротивление тела человека не превышает нескольких сот ом и существенной роли не играет.

На сопротивление организма воздействию электрического тока оказывает влияние физическое и психическое состояние человека. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводят к снижению сопротивления. Характер воздействия тока на человека в зависимости от силы и вида тока приведен в табл. 3.19.

Таблица 3.19. Характер воздействия тока на человека (путь тока рука – нога, напряжение 220 В)

Ток, мА
Переменный ток, 50 Гц
Постоянный ток
0,6…1,5
Начало ощущения, легкое дрожание пальцев
Ощущений нет
2,0…2,5
Начало болевых ощущений
То же
5,0…7,0
Начало судорог в руках
Зуд, ощущение нагрева
8,0…10,0
Судороги в руках, трудно, но можно оторваться от электродов
Усиление ощущения нагрева
20,0..

,25,0
Сильные судороги и боли, неотпускающий ток, дыхание затруднено
Судороги рук, затруднение дыхания
50,0…80,0
Паралич дыхания
То же
90,0…

100,0
Фибрилляция сердца при действии тока в течение 2–3 с, паралич дыхания
Паралич дыхания при длительном протекании тока
300,0
То же, за меньшее время
Фибрилляция сердца через 2–3 с, паралич дыхания

Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10с – 2 мА, при 10 с и менее – 6 мА. Ток, при котором пострадавший не может самостоятельно оторваться от токоведущих частей, называется неотпускающим.

Переменный ток опаснее постоянного, однако, при высоком напряжении (более 500 В) опаснее постоянный ток. Из возможных путей протекания тока через тело человека (голова –рука, голова –ноги, рука –рука, нога –рука, нога –нога и т. д.

) наиболее опасен тот, при котором поражается головной мозг (голова–руки, голова– ноги), сердце и легкие (руки –ноги).

Неблагоприятный микроклимат (повышенная температура, влажность) увеличивает опасность поражения током, так как влага (пот) понижает сопротивление кожных покровов.

При гигиеническом нормировании ГОСТ 12.1.038–82* устанавливает предельно допустимые напряжения прикосновения и токи, протекающие через тело человека (рука – рука, рука – нога) при нормальном (неаварийном) режиме работы электроустановок производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц (табл. 3.20).

Таблица 3.20. Предельно допустимые уровни напряжения и тока. Род тока
Нормируемая величина
Предельно допустимые уровни, не более, при продолжительности воздействия тока, Iа, с.

Переменный,

50 Гц

Переменный,

400 Гц

Постоянный

Выпрямленный двухполупериодичный

Выпрямленный однополупереодичный

Ua, B

Ia, мА

Ua, B

Ia, мА

Ua, B

Ia, мА

Ua, B

Ua, B
0,01… 0,08
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
Св. 1,0 650

650

650

650

650
500

500

500

500

500
250

500

400

400

400
165

330

350

300

300
125

250

300

270

250
100

200

250

230

200
85

170

240

220

190
70

140

230

210

180
65

100

220

200

170
55

110

210

190

160
50

100

200

180

150
36

6

36

8

40

15

Источник: https://bookucheba.com/jiznedeyatelnosti-bjd-bezopasnost/325-elektricheskiy-tok-17866.html

Контрольный тест по физике на тему:

3.2.5. Электрический ток

контрольный тест по физике Электрический ток 8 класс

Тренировочный тест по физике Электрический ток 8 класс с ответами. Работа включает в себя 2 варианта. В каждом варианте по 9 заданий.

Вариант 1

1. Как движутся свободные электроны в металлическом проводнике, присоединённом к полюсам источника тока?

1) беспорядочно с одинаковыми скоростями2) беспорядочно с различными скоростями3) упорядоченно

4) упорядоченно с одинаковыми скоростями

2. Какое действие электрического тока используется в работе гальванометра?

А. Тепловое.Б. Химическое.

В. Магнитное.

Правильным является ответ

1) только А2) только Б3) только В

4) А и В

3. Какой процесс происходит внутри источника тока при его работе?

1) источник тока создаёт электрические заряды, которые движутся по проводникам2) источник тока вырабатывает электрический ток3) в источнике тока совершается работа по разделению заряженных частиц

4) в источнике тока электроны скапливаются на одном из электродов

4. На рисунке представлена схема электрической цепи, состоящей из источника тока, резистора и двух амперметров. Амперметр A1показывает силу тока 0,5 А. Амперметр А2 покажет силу тока

1) меньше 0,5 А2) больше 0,5 А3) 0,5 А

4) 0

5. В цепь последовательно включены три резистора сопротивлениями R1< R2 < R3 соответственно. Напряжение на каком из резисторов будет наименьшим?

1) R1
2) R2
3) R3
4) напряжение будет одинаковым

6. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм2, второго — 4 мм2. Сопротивление какого из проводников больше и во сколько раз?

1) первого; в 0,125 раза2) первого; в 8 раз3) второго; в 0,125 раза

4) второго; в 8 раз

7. Чему равно общее сопротивление участка цепи, если R1 = 10 Ом, R2 = 10 Oм, R3 = 15 Ом, R4 = 5 Ом?

1) 9 Ом2) 12 Ом3) 15 Ом

4) 18 Ом

8. Какое количество теплоты выделится в электрическом нагревателе в течение 5 мин, если его сопротивление 20 Ом, а сила тока в цепи 6 А?

1) 21,6 кДж2) 36 кДж3) 216 кДж

4) 360 кДж

9. Установите соответствие между физическими величинами и единицами измерения этих величин в СИ. К каждой позиции первого столбца подберите соответствующую позицию второго.

Физическая величина

А) напряжениеБ) сопротивление

В) электрический заряд

Единица величины

1) кулон2) ватт3) ампер4) вольт

5) ом

Вариант 2

1. Электрическим током называют

1) движение электронов по проводнику2) упорядоченное движение электронов по проводнику3) движение заряженных частиц по проводнику

4) упорядоченное движение заряженных частиц по проводнику

2. Какое действие электрического тока лежит в основе работы промышленных подъёмных кранов?

А. Тепловое.Б. Химическое.

В. Магнитное.

Правильным является ответ

1) только А2) только Б3) только В

4) А и В

3. Какое превращение энергии происходит в гальваническом элементе?

1) химическая энергия превращается в электрическую2) механическая энергия превращается в электрическую3) внутренняя энергия превращается в электрическую

4) магнитная энергия превращается в электрическую

4. В таблице представлены результаты исследования зависимости силы тока от напряжения на концах резистора. Каково значение напряжения при силе тока 2,5 А?

U, В

5

10

I, А

1

2

2,5

1) 11 В2) 12,5 В3) 13,5 В

4) 15 В

5. Участок электрической цепи, по которому течёт ток, содержит резистор. Если к нему параллельно подключить ещё один резистор с таким же сопротивлением, то напряжение на первом резисторе

1) уменьшится в 2 раза2) увеличится в 2 раза3) останется неизменным

4) станет равным нулю

6. Площади поперечного сечения двух медных проводников одинаковы. Длина первого проводника 20 см, второго — 1 м. Сопротивление какого из проводников больше и во сколько раз?

1) первого; в 0,2 раза2) первого; в 5 раз3) второго; в 0,2 раза

4) второго; в 5 раз

7. Чему равно общее сопротивление участка цепи, если R1 = 10 Ом, R2 = 15 Ом, R3 = 5 Ом, R4 = 2 Ом?

1) 9 Ом2) 13 Ом3) 15 Ом

4) 18 Ом

8. Паяльник сопротивлением 400 Ом включён в цепь напряжением 220 В. Какое количество теплоты выделится в паяльнике за 5 мин?

1) 0,16 кДж2) 2,7 кДж3) 36,3 кДж

4) 49 кДж

9. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответствующую позицию второго.

Физическая величина

А) работа электрического токаБ) сила тока

В) мощность электрического тока

Формулы

  1. q/t
    2) qU
    3) RS/l
    4) UI
    5) U/I

Ответы на тренировочный тест по физике Электрический ток 8 класс
Вариант 1

Источник: https://infourok.ru/kontrolniy-test-po-fizike-na-temu-elektricheskiy-tok-klass-3822758.html

Электрические явления

3.2.5. Электрический ток

Автор
Плис Валерий Иванович 152 статьи

2.1. Электрический ток в проводниках.
Направление электрического тока. Сила и плотность тока

Направленное движение электрических зарядов называется электрическим током. Носителями зарядов в зависимости от типа проводника могут быть электроны и ионы.

В металлических проводниках – это свободные электроны, или электроны проводимости, в гальванических ваннах, т. е. в растворах электролитов, – положительные и отрицательные ионы.

Тела или вещества, в которых можно создать электрический ток, называют проводниками электрического тока. Проводниками являются все металлы, водные растворы солей или кислот, ионизованные газы.

При движении свободных заряженных частиц происходит перенос заряда.

Количественной характеристикой – силой II тока – принято считать скорость переноса заряда через любое поперечное сечение проводника, т. е.

количество заряда, перемещённого через «контрольную поверхность», на которой осуществляется подсчёт пересёкшего её заряда, в единицу времени:

где `q` – заряд, прошедший через произвольное фиксированное поперечное сечение проводника за время от `0` до `t`. Если сила тока не изменяется со временем, ток называют постоянным. Единица измерения силы тока в системе СИ называется ампером (А) (в честь А.М. Ампера – французского учёного XIX века) и вводится через магнитное взаимодействие токов.

Один ампер есть сила такого тока, поддерживаемого в двух бесконечных (очень длинных) прямолинейных параллельных проводниках ничтожно малой площади поперечного сечения, расположенных на расстоянии `1`м в вакууме, при котором в расчёте на `1` метр длины проводника действует сила  `F=2*10(-7) “Н”`.

Единица измерения силы тока ампер, наряду с метром, секундой, килограммом, является основной единицей системы СИ.

Единица измерения заряда кулон (Кл) является производной и вводится в соответствии с (1): один кулон – это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1A1\mathrm A за 1c1\mathrm c, т. е. 1Кл=1A·1c.1\mathrm{Кл}=1\mathrm A\cdot1\mathrm c.

За направление электрического тока принимают направление, в котором движутся положительно заряженные носители тока.

Отношение силы `I` тока к площади `S` поперечного сечения проводника называется плотностью тока:

которая равна силе тока в расчёте на единицу площади поперечного сечения.

2.2. Электрические цепи. Источники электрического тока

Электрический ток течёт в электрических цепях, представляющих собой различные приборы и устройства, соединённые проводниками.

Если бы носители заряда, приведённые в движение в замкнутом проводнике, не взаимодействовали с ионами, то они двигались бы бесконечно долго. Такой ток можно наблюдать в некоторых веществах при весьма низких температурах; удельное сопротивление таких веществ – их называют сверхпроводниками – равно нулю при этих температурах.

Но в большинстве проводников при протекании тока движущиеся заряженные частицы взаимодействуют с неподвижными и теряют кинетическую энергию.

Для получения постоянного тока, т. е. не изменяющегося с течением времени, на заряды в электрической цепи должны действовать не только силы электрического поля, но и другие силы, отличные от сил электрического взаимодействия.

Такие силы получили общее название сторонних электродвижущих сил. Всякое устройство, в котором возникают сторонние силы, называют источником тока. Источниками тока являются, например, батарейки, аккумуляторы и т. д.

Сторонние силы в источниках возникают по разным причинам.

В химических источниках, например, в автомобильном аккумуляторе или в гальваническом элементе, они возникают благодаря химическим реакциям в области контакта пластин аккумулятора или электродов батарейки с жидким электролитом.

В фотоэлементе они возникают в результате действия электромагнитного излучения на электроны в металле или полупроводнике. В генераторах на электростанции сторонние силы возникают в проводниках при движении их в магнитном поле.

Если воспользоваться гидростатической аналогией, то силы электрического поля в электрической цепи можно уподобить силе тяжести, стремящейся выравнивать уровни жидкости в сообщающихся сосудах; источник тока с действующими в нём сторонними электродвижущими силами можно сравнить с насосом, работающим против силы тяжести и восстанавливающим разность уровней в сосудах, несмотря на течение жидкости.

Источник тока по результатам своего действия представляет собой устройство, отделяющее положительные заряды от отрицательных. После разделения заряды перемещаются на полюса (электроды) источника. При этом один из электродов заряжается положительно, другой отрицательно.

И если к источнику подключить проводник, то эти заряды действуют на заряды проводника вблизи полюсов, те в свою очередь действуют на соседние и т. д.

В результате этих коллективных взаимодействий в цепи на поверхности проводника возникает такое распределение зарядов, которое обеспечивает существование внутри проводника электрического поля, а в проводнике под действием сил этого поля течёт электрический ток.

2.3. Электрическое напряжение. Работа и мощность
электрического тока. Тепловое действие тока

В электрической цепи, подключённой к источнику, возникают электрические силы, действующие на носители зарядов и приводящие их в движение.

Пусть под действием электрической силы `F` частица, несущая заряд `q`, переместилась вдоль проводника из точки `1` в точку `2`, а сила `F` совершила над заряженной частицей работу `A_(12)`.

Отношение работы `A_(12)` электрической силы над зарядом `q` при перемещении его из точки `1` в точку `2` к самому заряду qq называют электрическим напряжением между точками `1` и `2`:

Единицей измерения напряжения в СИ является вольт (В).

За один вольт принимается напряжение на концах проводника, при котором работа сил электрического поля по перемещению через этот проводник заряда в один кулон равна одному джоулю.

Эта единица  названа в честь итальянского физика А. Вольта, который в 1800 г. изобрёл электрическую батарею и впервые получил с её помощью постоянный ток, устойчиво поддерживавшийся в электрической цепи. Это открытие ознаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию: современная жизнь немыслима без использования электрического тока.

В соотношении (3) индексы `1` и `2` можно опустить, если помнить, что `1` – это точка «старта», `2` – точка «финиша».

Зная напряжение `U` на концах проводника и силу тока `I`, текущего в проводнике в течение времени `t` постоянного тока, вычислим заряд `q=I*t`, который протечёт за указанное время по проводнику. Тогда за это время силы электрического поля в проводнике совершат работу

Это позволяет судить о скорости совершения работы электрическими силами, т. е. о мощности, развиваемой силами электрического поля. Из (4) следует, что в проводнике, напряжение на концах которого равно `U`, а сила тока `I`, силы электрического поля в единицу времени совершают работу

Напомним, что единицей измерения мощности в СИ служит ватт (Вт).

Очень часто работу и мощность электрических сил называют соответственно работой и мощностью электрического тока, тем самым подчёркивают, что это работа по поддержанию электрического тока в цепи.

Работа электрического тока может идти на изменение механической и внутренней энергий проводника. Например, в результате протекания электрического тока через электродвигатель его ротор (подвижная часть, способная вращаться, в отличие от статора) раскручивается.

При этом большая часть работы электрических сил идёт на увеличение механической энергии ротора, а также других тел, с которыми ротор связан теми или иными механизмами.

Другая часть работы электрического тока (в современных электродвигателях один – два процента) идёт на изменение внутренней энергии обмоток двигателя, что приводит к их нагреванию (обмотка электродвигателя представляет собой катушку, изготовленную обычно из меди, с большим числом витков).

Обсудим тепловое действие электрического тока более подробно. Из опыта известно, что электрический ток нагревает проводник.

Объясняется это явление тем, что свободные электроны в металлах, перемещаясь под действием сил электрического поля, взаимодействуют с ионами вещества и передают им свою энергию.

В результате увеличивается энергия колебаний ионов в проводнике, его температура растёт, при этом говорят, что в проводнике за некоторое время `t` выделяется количество теплоты `Q_(“тепл”)`.

Если проводник с током неподвижен и величина тока постоянна, то работа электрических сил идёт на изменение внутренней энергии проводника. По закону сохранения энергии это количество равно работе сил электрического поля (4) в проводнике за то же самое время,      т. е.

Отсюда мощность `P` тепловыделения, т. е. количество теплоты, выделяющейся в единицу времени на участке цепи, где напряжение равно `U`, а сила тока равна `I` составляет

2.4. Закон Ома. Электрическое сопротивление.
Закон Джоуля – Ленца

Как отмечалось выше, для поддержания постоянного тока в проводнике, т. е. движения электронов с постоянной скоростью, необходимо непрерывное действие сил электрического поля на носители заряда. Это означает, что электроны в проводниках движутся «с трением», иначе говоря, проводники обладают электрическим сопротивлением.

Если состояние проводника остаётся неизменным (не изменяется его температура и т. д.), то для каждого проводника существует однозначная зависимость между напряжением `U` на концах проводника и силой `I` тока в нём `I=f(U)`. Она называется вольтамперной характеристикой данного проводника.

Для многих проводников эта зависимость особенно проста – линейная: сила тока прямо пропорциональна приложенному напряжению, т. е.

где `R` – электрическое сопротивление проводника (постоянная при неизменных условиях величина).

Этот закон носит название закона Ома. Немецкий физик Г. Ом в 1827 г. в результате серии экспериментов установил, что для широкого класса проводников сила `I` электрического тока в проводнике пропорциональна напряжению `U` на концах проводника.

Сопротивление `R` проводника зависит от рода вещества проводника, от его размеров и формы, а также от состояния проводника.

Единицей сопротивления в СИ является один Ом (Ом). За один Ом принимается сопротивление такого проводника, в котором при напряжении между его концами один вольт течёт постоянный ток силой один ампер: `1`Ом`=1`В`//1`A.

Вытекающее из закона Ома (8) соотношение

можно рассматривать и как определение сопротивления по приведённой формуле.

Г. Ом установил, что для проводников  RR не зависит от U.U. 

В технических приложениях для описания процессов в электрических цепях часто используется понятие  вольтамперной характеристики. Для проводников, подчиняющихся закону Ома (8), графиком зависимости силы `I` тока в проводнике от напряжения `U` на нём будет прямая линия, проходящая через начало координат (см. рис. 1). При этом говорят, что проводник имеет линейную вольтамперную характеристику.

В то же время для полупроводников, электронных ламп, диодов, транзисторов зависимость `I=f(U)` носит сложный характер, и такие элементы называют нелинейными (или неомическими). Для таких элементов величина `R`, вычисленная по формуле `R=U/I`, зависит от `U`.

В частности, при измерении вольтамперной характеристики лампочки накаливания с вольфрамовой нитью мы обнаружим, что она имеет вид, схематически показанный на рис. 2. Искривление вольтамперной характеристики связано с нагревом нити и увеличением сопротивления нити накала с ростом температуры.

В некоторых устройствах, таких как диод, сопротивление зависит от направления тока.

Обсудим вопрос о тепловыделении в проводнике. С учётом закона Ома (8) формула (7) для мощности тепловыделения принимает вид:

Другими словами, если через резистор `R` протекает постоянный ток силой `I`, то за `t` секунд в резисторе выделяется количество теплоты, равное

Соотношения (10), (11) являются математическим выражением закона, открытого в XIX веке практически одновременно и независимо английским физиком Д. Джоулем и русским физиком Э.Х. Ленцем.

Обратим внимание, что полученный закон является прямым следствием закона сохранения энергии в применении к движению электрических зарядов под действием сил электрического поля.

2.5 Расчёт сопротивления проводника.
Удельное сопротивление

Причиной электрического сопротивления является взаимодействие электронов с ионами кристаллической решётки. Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, на опытах изучил Г. Ом. Он установил, что сопротивление проволоки длиной `l` и площадью поперечного сечения `S` определяется по формуле

где `rho` – удельное сопротивление вещества, из которого изготовлен проводник. Эту величину определяют экспериментально, результаты измерений удельного сопротивления приводят в физических справочниках (и в справочных разделах задачников по физике).

В соответствии с формулой (12) единицей удельного сопротивления в СИ служит Ом`*`м.

Удельное сопротивление вещества зависит от температуры. Для металлов с ростом температуры растёт и удельное сопротивление. У электролитов наблюдается обратная зависимость. Эти обстоятельства следует учитывать на практике при расчётах спиралей электронагревательных приборов,   нитей лампочек накаливаний т. д.

2.6. Соединение проводников в электрической цепи

В электрических цепях, с которыми мы встречаемся на практике, проводники могут быть соединены различными способами. Наиболее простые способы соединения известны как последовательное и параллельное соединения резисторов.

Рассмотрим участок ABAB цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены последовательно (рис. 3).

Поставим вопрос: каким сопротивлением `R_(“экв”)`, подключённым между точками `A` и `B`, можно заменить последовательно соединенные сопротивления `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего от `A` к `B`, остались неизменными?

Для ответа на поставленный вопрос заметим, что при последовательном соединении сила тока во всех проводниках одинакова – иначе заряды накапливались бы (или исчезали) в каких-то точках цепи. Так что `I=I_1=I_2`.

Далее: работа сил электрического поля над любым зарядом при перемещении его из `A` в `B` будет равна сумме работ электрических сил над этим зарядом, совершаемых силами поля при его перемещении в каждом проводнике.

Отсюда следует, что напряжение на `AB` равно сумме напряжений на резисторах

В эквивалентной схеме сила II тока и напряжение UABU_{AB} «не заметили» замены `R_1` и `R_2` на `R_(“экв”)`. В этом случае по закону Ома `U_(AB)=I*R_(“экв”)`. Из сопоставления двух последних равенств находим

Этот результат легко обобщается на случай `n` последовательно соединённых резисторов `R_1,R_2,…,R_n`. В этом случае (рекомендуем лично выполнить соответствующий вывод):

Рассмотрим теперь участок `AB` цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены параллельно (см. рис. 4).

Поставим вопрос: каким сопротивлением `R_(“экв”)`, подключённым между точками `A` и `B`,  можно заменить параллельно соединённые `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего к узлу `A` и вытекающего из узла `B` остались неизменными?

Для ответа на поставленный вопрос заметим, что при параллельном соединении проводников работа сил электрического поля в расчёте на единичный заряд (см.

(3)) в проводниках одинакова (иначе нарушался бы закон сохранения энергии). Это означает, что напряжения на параллельно соединённых проводниках одинаковы. Обозначим его `U_(AB)`.

Силу тока в каждом проводнике определим по закону Ома:  `I_1=(U_(AB))/R_1`,  `I_2=(U_(AB))/R_2`.

Далее, в любом узле, т. е. точке, где сходятся более двух проводов, по закону сохранения электрического заряда сумма токов, втекающих в узел, равна сумме токов, вытекающих из него. Отсюда следует, что в рассматриваемой задаче (рис. 4) сила `I` тока на входе и на выходе равна сумме сил токов в отдельных ветвях параллельной цепи:

В эквивалентной схеме сила II тока и напряжение UABU_\mathrm{AB} связаны с `R_(“экв”)` законом Ома (8) I=UABRэквI=\dfrac{U_\mathrm{AB}}{R_\mathrm{экв}}. Два последних равенства справедливы при любых значениях, входящих в них величин `I` и `U_(AB)` если

Этот результат легко обобщается на случай `n` параллельно соединённых резисторов `R_1, R_2, …, R_n`. В этом случае

2.7. Измерения силы тока и напряжения в электрических цепях.
Амперметр и вольтметр

Для измерения токов и напряжений в электрических цепях используются амперметры и вольтметры, основным элементом которых служит гальванометр – прибор, предназначенный для измерения величин токов.

Эти измерения могут быть основаны на одном из действий тока: тепловом, физическом, химическом. Гальванометр, градуированный на величину тока, называется амперметром.

По закону Ома (8) напряжение и сила тока связаны прямо пропорциональной зависимостью, поэтому гальванометр можно градуировать и на напряжение. Такой прибор называют вольтметром.

В этом задании мы не будем касаться вопросов, связанных с конкретным устройством электроизмерительных приборов, с их системами и принципами работы. Остановимся лишь на требованиях, предъявляемых к внутренним сопротивлениям амперметров и вольтметров. Важно, чтобы при включении в цепь для измерений эти приборы вносили как можно меньшее искажение в измеряемую величину.

Амперметр включается в цепь последовательно. Если сопротивление амперметра `R_”а”` и его подключают к участку цепи с сопротивлением `R_”ц”` (рис. 7а), то эквивалентное сопротивление участка цепи и амперметра в соответствии с (13) равно `R=R_”ц”+R_”а”=R_”ц”(1+(R”а”)/R_”ц”)`.

Отсюда следует, что амперметр не будет заметно изменять сопротивление участка цепи, если его собственное (внутреннее) сопротивление будет мало по сравнению с сопротивлением участка цепи.

Чтобы добиться этого, гальванометр снабжают шунтом (синоним – добавочный путь): вход и выход гальванометра соединяются некоторым сопротивлением, обеспечивающим параллельный гальванометру дополнительный путь для тока (рис. 7 б).

Поэтому внутреннее сопротивление амперметра меньше, чем у применённого в нём гальванометра. (Читателю рекомендуется лично убедиться в этом с помощью соотношения (14).

) Амперметр называется идеальным, если его внутреннее сопротивление можно считать равным нулю.

Вольтметр подключается к электрической цепи параллельно тому участку, напряжение на котором требуется измерить. Присоединив, например, вольтметр с сопротивлением  `R_”в”` параллельно лампочке с сопротивлением `R_”л”` (рис. 8 а), получим участок цепи, эквивалентное сопротивление которого вычисляется по формуле (14)  `R=R_”л” (R”в”)/(R_”л”+R_”в”)`.

Отсюда следует, что чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки, тем меньше эквивалентное сопротивление будет отличаться от сопротивления лампочки.

Вывод: чтобы процесс измерения меньше искажал значение измеряемого напряжения, собственное (внутреннее) сопротивление вольтметра должно быть как можно больше. Поэтому в вольтметре последовательно гальванометру включают некоторое сопротивление (рис. 8б).

Внутреннее сопротивление такого вольтметра, как правило, во много раз больше сопротивления входящего в него гальванометра. Вольтметр называется идеальным, если его внутреннее сопротивление можно считать бесконечно большим.

Каждый измерительный прибор рассчитан на определённый интервал значений измеряемой величины. И в соответствии с этим проградуирована его шкала. Для расширения пределов измерений в амперметре можно использовать добавочный шунт, а в вольтметре – добавочное сопротивление. Найдём значения этих сопротивлений, увеличивающих максимальную измеряемую величину тока или напряжения в  раз.

2.8. Шунт к амперметру

Если амперметр рассчитан на силу тока `I_m`, а с его помощью необходимо измерять силу тока в `n` раз большую (см. рис. 9), то в этом случае, подключив параллельно амперметру шунт, разделим ток силой `nI_m` на два тока: один из них силой `I_m` будет течь через амперметр, тогда через шунт будет протекать ток силой `I_”ш”=(n-1)I_m`.

Поскольку шунт включён параллельно амперметру, то напряжения на шунте `U_”ш”=(n-1)I_mR_”ш”`  и амперметре `U_”А”=I_mR_”А”`  равны. Из равенства напряжений

находим

2.9. Добавочное сопротивление к вольтметру

Если вольтметр рассчитан на максимальное напряжение `U_max`, а с его помощью необходимо измерять напряжение, в `n` раз большее, то, подключив последовательно с вольтметром добавочное сопротивление `R_2` (рис. 10), разделим напряжение `n*U_max` на два слагаемых: одно из них – это напряжение UmaxU_\max на вольтметре, второе – напряжение n-1Umax\left(n-1\right)U_\max на добавочном сопротивлении.

Поскольку добавочное сопротивление включено последовательно с вольтметром, то через вольтметр и добавочное сопротивление течёт одинаковый ток, т. е. справедливо равенство

Отсюда                                     

Источник: https://zftsh.online/course/1343/-2-elektricheskij-tok

Book for ucheba
Добавить комментарий