5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Классификация взрывоопасных зон и маркировка взрывозащищенного оборудования

5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Ex-изделия – это изделия, которое полностью или частично применяется для использования электрической энергии и включающие один или более видов взрывозащиты для условий потенциально взрывоопасной газовой среды.

К таковым, наряду с другими, относятся устройства для выработки, передачи, распределения, хранения, измерения, регулирования, преобразования и потребления электрической энергии, устройства электросвязи, а также изделия, применяемые во взрывоопасных зонах, которые могут служить источником воспламенения.

Ex-компоненты – части Ex-изделия, которые отдельно во взрывоопасной среде не используют; при встраивании в Ех-оборудование Ex-компонентов в обязательном порядке требуется подтверждение соответствия их взрывозащитных свойств требованиям нормативных документов.

Ех-системы – агрегаты из соединенных между собой Ех-изделий, в которых соединение должно быть выполнено в соответствии с описательным документом системы, с тем, чтобы оно отвечало требованиям взрывозащиты.

Ех-оборудование – общий термин, применяющийся к Ех-изделиям (устройствам), компонентам и системам.

Взрывоопасные зоны

ВАЖНО ЗНАТЬ

Опасность взрыва возникает при одновременном наличии следующих источников:
1. воздуха
2. горючей пыли / горючих газов
3. активных источников воспламенения

Взрывоопасная атмосфера может возникнуть при соединении горючей пыли, горючих газов или паров с воздухом. Также должен присутствовать активный источник воспламенения, способный зажечь эту атмосферу.

В качестве активных источников воспламенения рассматриваются:

огонь, пламя, жар
искровые, дуговые и тлеющие
электрические разряды

искры от механического
воздействия

электростатические
разрядные искры

горячие поверхности,
адиабатическое сжатие

В настоящее время на территории РФ и Таможенного Союза одновременно действуют несколько нормативных документов, содержащих определения взрывоопасных зон и регламентирующих процесс выбора вида взрывозащиты допускаемого для использования в каждой из взрывоопасных зон – ПУЭ, глава 7.3.

и серия стандартов ГОСТ Р и ГОСТ ТС, разработанных на базе стандартов МЭК 60079 и МЭК 61241. Определения, действующие в ПУЭ и ГОСТ значительно отличаются. На сегодняшний день разработан проект СП “ЭЛЕКТРОУСТАНОВКИ НИЗКОВОЛЬТНЫЕ ЗДАНИЙ И СООРУЖЕНИЙ.

ПРАВИЛА ПРОЕКТИРОВАНИЯ ВО ВЗРЫВООПАСНЫХ ЗОНАХ”, объединяющий требования этих нормативных документов.

Современная унифицированная классификация взрывоопасных зон в соответствии 012/2011 “О безопасности оборудования для работы во взрывоопасных средах”

Класс взрывоопасной зоны, в соответствии с которым производится выбор электрооборудования, определяется технологами совместно со специалистами проектной или эксплуатирующей организации. Нормативные документы содержат определение геометрических размеров каждого класса зон.

Классификация взрывоопасных зон по ГОСТ 31610.10-2012/IEC 60079-10:2002:

Зона 0Зона 1Зона 2
Зона в которой взрывоопасная газовая смесь присутствует постоянно или в течение длительных периодов времени.Зона в которой существует вероятность присутствия взрывоопасной газовой смеси в нормальных условиях эксплуатации.Зона в которой маловероятно присутствие взрывоопасной газовой смеси в нормальных условиях эксплуатации, а если она возникает, то редко, и существует очень непродолжительное время.

Классификация взрывоопасных зон по пыли:

Современная классификация зон для газов и паров включает зоны трех классов: 0, 1 и 2, но практика показала, что общая классификация зон одновременно для газа и пыли является неприемлемой.

В отличие от зон для газа или пара, зоны, опасные по воспламенению горючей пыли, не могут быть классифицированы в зависимости от нормальных или аварийных условий и от времени.

Усиленная вентиляция может привести к появлению облаков пыли и поэтому увеличить, а не уменьшить опасность.

Зона 20Зона 21Зона 22
Зона, в которой горючая пыль в виде облака присутствует постоянно или частично при нормальном режиме работы оборудования в количестве, способном произвести концентрацию, достаточную для взрыва горючей или воспламеняемой пыли в смесях с воздухом, и/или где могут формироваться слои пыли произвольной или чрезмерной толщины. Это может быть облака внутри области содержания пыли, где пыль может образовывать взрывчатые смеси часто или на длительный период времени.Зона, не классифицируемая как зона класса 20, в которой горючая пыль в виде облака не может присутствовать при нормальном режиме работы оборудования в количестве, способном произвести концентрацию, достаточную для взрыва горючей пыли в смесях с воздухом. Эта зона может включать кроме прочих, области в непосредственной близости от накопления пыли или мест освобождения и области, где присутствуют облака пыли, в которых при нормальном режиме работы может создаться концентрация, достаточная для взрыва горючей пыли в смесях с воздухом.Зона, не классифицируемая как зона 21, в которой облака горючей пыли могут возникать редко и сохраняются только на короткий период или в которых накопление слоев горючей пыли может иметь место при ненормальном режиме работы, что может привести к возникновению способных воспламеняться смесей пыли в воздухе. Если, исходя из аномальных условий, устранение накоплений или слоев пыли не может быть гарантированно, тогда зону классифицируют как зону класса 21. Эта зона может включать, кроме прочих, области вблизи оборудования, содержащего пыль, из которого пыль может улетучиваться через места утечки и образовывать отложения (например помещения, в которых пыль может улетучиваться со станка (фрезы) и затем оседать).

ГОСТ 31610.10-2012/IEC 60079-10:2002

Источник: http://exd.ru/index.php?id=2618

Стандарты взрывозащищенного оборудования

5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Взрывоопасными производствами на данный момент являются не только предприятия и объекты химической, горнорудной, нефтегазодобывающей, атомной промышленностей.

К взрыво- и пожароопасным относятся, например, предприятия по производству продуктов питания: мукомольные, кондитерские, винно-водочные; а также деревообрабатывающие и целлюлозно-бумажные комбинаты, цементные и железобетонные заводы и т. д.

Кроме того, современное предприятие любой отрасли имеет в своей структуре взрывоопасные зоны, т. к. на любом современном производстве есть склады ГСМ и лакокрасочных изделий, участки гальванической и высокой температурной обработки, покрасочные цеха или камеры и т. п.

Всё электротехническое оборудование, устанавливаемое в такой взрывоопасной зоне, должно быть выполнено в специальном взрывозащищенном исполнении, т. е. оборудование не должен являться источником воспламенения или взрыва.

Чтобы понять, как и с помощью какого оборудования защищать соответствующие взрывоопасные зоны, необходимо рассмотреть некоторые теоретические вопросы.

В 2001 году были введены новые стандарты ГОСТ Р 51330 “Оборудование взрывозащищенное”, которые соответствуют требованиям международной электротехнической комиссии (МЭК) и европейским стандартам.

Кроме того, не переиздавалась пока и глава 7 “Правил устройства электроустановок” (ПУЭ), которая также является основополагающей в теории взрывозащищенного электрооборудования. Опираясь на эти документы, можно дать несколько определений.

Взрывоопасная зона – помещение или ограниченное пространство в помещении или наружной установке, в котором имеются или могут образоваться взрывоопасные смеси. Взрывоопасные зоны подразделяются на следующие классы:

  • Зона класса 0: зона, в которой взрывоопасная газовая смесь присутствует постоянно или в течение длительных периодов времени.
  • Зона класса 1: зона, в которой существует вероятность присутствия взрывоопасной газовой смеси в нормальных условиях эксплуатации.
  • Зона класса 2: зона, в которой маловероятно присутствие взрывоопасной газовой смеси в нормальных условиях эксплуатации, а если она возникает, то редко и существует очень непродолжительное время.

Взрывозащищенное оборудование – электрооборудование, в котором предусмотрены конструктивные меры по устранению или затруднению возможности воспламенения окружающей его взрывоопасной среды вследствие эксплуатации этого электрооборудования.

Вид взрывозащиты – специальные меры, предусмотренные в электрооборудовании с целью предотвращения воспламенения окружающей взрывоопасной газовой среды; совокупность средств взрывозащиты электрооборудования, установленная нормативными документами.

Средство взрывозащиты – конструктивное и (или) схемное решение для обеспечения взрывозащиты электрооборудования.

Уровень взрывозащиты – степень взрывозащиты электрооборудования при установленных нормативными документами условиях. Установлены следующие уровни взрывозащиты электрооборудования:

  • “электрооборудование повышенной надежности против взрыва”
  • “взрывобезопасное электрооборудование”
  • “особовзрывобезопасное электрооборудование”

Электрооборудование повышенной надежности против взрыва – взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается только в признанном нормальным режиме его работы. Знак уровня – “2Ex”.

Взрывобезопасное электрооборудование – взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств взрывозащиты. Знак уровня – “1Ex” или “РВEx” для рудничного оборудования.

Особовзрывобезопасное электрооборудование – взрывозащищенное электрооборудование, в котором по отношению к взрывобезопасному электрооборудованию приняты дополнительные средства взрывозащиты, предусмотренные стандартами на виды взрывозащиты. Знак уровня – “0Ex” или “РОEx” для рудничного оборудования.

Взрывозащищенное электрооборудование может иметь следующие виды взрывозащиты:

  • взрывонепроницаемая оболочка – d;
  • заполнение или продувка оболочки под избыточным давлением – р;
  • кварцевое заполнение оболочки – q;
  • масляное заполнение оболочки – о;
  • защита вида – е;
  • искробезопасная электрическая цепь – i;
  • герметизация компаундом – m;
  • защита вида – n;
  • специальный вид взрывозащиты – s.

Виды взрывозащиты, обеспечивающие различные уровни взрывозащиты, различаются средствами и мерами обеспечения взрывобезопасности, оговоренными в стандартах на соответствующие виды взрывозащиты.

Для взрывозащищенного оборудования пожарной сигнализации и автоматики характерно применение, в основном, следующих видов взрывозащиты:

  • Вид взрывозащиты “искробезопасная электрическая цепь” (i) основывается на методе предотвращения взрыва или воспламенения за счет ограничения электрической и тепловой энергии.
  • Вид взрывозащиты “взрывонепроницаемая оболочка” (d) основан на методе сдерживания взрыва, главный принцип которого – не дать взрыву распространиться за пределы оболочки прибора.
  • В последнее время все большую практическую реализацию находят виды взрывозащиты с использованием метода изоляции, основанного на принципе физического разделения взрывоопасных частей и элементов прибора от взрывоопасной среды. Прежде всего, это вид взрывозащиты “герметизация компаундом” (m). В настоящее время именно с этим видом взрывозащиты выпускается все большее количество приборов. Связано это с тем, что практическая реализация этого вида взрывозащиты не требует больших затрат и снижает себестоимость оборудования.

Взрывозащищенное электрооборудование в зависимости от области применения подразделяется на две группы (таблица 1).

ЭлектрооборудованиеЗнак группы
Рудничное, предназначенное для подземных выработок шахт и рудниковI
Для внутренней и наружной устаноки (кроме рудничного)II

Таблица 1. Группы взрывозащищенного электрооборудования по области его применения

Электрооборудование группы II, имеющее виды взрывозащиты “взрывонепроницаемая оболочка” и (или) “искробезопасная электрическая цепь”, подразделяется также на три подгруппы, соответствующие категориям взрывоопасных смесей (таблица 2). Это подразделение базируется на безопасном экспериментальном максимальном зазоре (БЭМЗ) оболочек или минимальном токе воспламенения (МТВ) для электрооборудования с искробезопасными цепями.

Знак группы электрооборудованияЗнак подгруппы электрооборудованияКатегория взрывоопасной смеси, для которой электрооборудование является взрывозащищенным
IIIIА, IIВ и IIС
IIАIIА
IIВIIА, IIВ
IIСIIА, IIВ и IIС

Таблица 2. Подгруппы электрооборудования группы II

Электрооборудование, промаркированное как IIB, пригодно также для применения там, где требуется электрооборудование подгруппы IIА. Подобным образом электрооборудование, имеющее маркировку IIC, пригодно также для применения там, где требуется электрооборудование подгруппы IIА или IIB.

Электрооборудование группы II в зависимости от значения предельной температуры подразделяется на шесть температурных классов, соответствующих группам взрывоопасных смесей, где предельная температура – наибольшая температура поверхностей взрывозащищенного электрооборудования, безопасная в отношении воспламенения окружающей взрывоопасной среды (таблица 3).

Знак температурного класса электрооборудованияПредельная температура, °СКатегория взрывоопасной смеси, для которой электрооборудование является взрывозащищенным
Т1450Т1
Т2300Т1, Т2
Т3200Т1 – Т3
Т4135Т1 – Т4
Т5100 Т1 – Т5
Т685Т1 – Т6

Таблица 3. Температурные классы электрооборудования группы II

Таким образом, мы подошли к расшифровке записи маркировки взрывозащиты, которая всегда присваивается конкретному виду взрывозащищенного электротехнического оборудования. В эту маркировку в указанной ниже последовательности входят:

  • знак уровня взрывозащиты электрооборудования (2, 1, 0);
  • знак Ех, указывающий на соответствие электрооборудования стандартам на взрывозащищенное электрооборудование. ( – от английского explosion – взрыв);
  • знак вида взрывозащиты (d, p, q, o, e, I, m, n, s);
  • знак группы или подгруппы электрооборудования (II, IIА, IIВ, IIС);
  • знак температурного класса электрооборудования (Т1, Т2, Т3, Т4, Т5, Т6).

В маркировке по взрывозащите могут иметь место дополнительные знаки и надписи, например, буквы X и U – в соответствии со стандартами на электрооборудование с отдельными видами взрывозащиты.Примеры маркировки взрывозащищенного электрооборудования приведены в таблице 4.

Уровень взрывозащитыВид взрывозащитыГруппа (подгруппа)Температурный классМаркировка по взрывозащите
Электрооборудование повышенной надежности против взрываЗащита вида “е” и взрывонепроницаемая оболочкаIIBT32ExedIIBT3
Искробезопасная электрическая цепьIICT62ExedIICT6
Взрывобезопасное электрооборудованиеВзрывонепроницаемая оболочкаIIAT32ExedIIAT3
Искробезопасная электрическая цепьIIBT42ExedIIBT4
Особовзрывобезопасное электрооборудованиеИскробезопасная электрическая цепьIICT62ExedIICT6
Искробезопасная электрическая цепь и взрывонепроницаемая оболочкаIIAT42ExedIIAT4

Таблица 4. Примеры маркировки взрывозащищенного электрооборудования

Источник: https://www.peppersrussia.com/?page=info_vzryv_oborud_standarts

Взрывозащита технологического оборудования

5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Лекция 7

Средства снижения травмоопасноститехнических систем

Ни одно производство не обходится безиспользования систем повышенногодавления (трубопроводов, баллонов иемкостей для хранения или перевозкисжатых, сжиженных и растворенных газов,газгольдеров и т.д.). любые системыповышенного давления всегда представляютпотенциальную опасность.

Причинами разрушения или разгерметизациисистем повышенного давления могут быть:внешние механические воздействия,старение систем (снижение механическойпрочности); нарушение технологическогорежима; конструкторские ошибки; изменениесостояния герметизируемой среды;неисправности в контрольно- измерительных,регулирующих и предохранительныхустройствах; ошибки обслуживающегоперсонала и т.д.

Взрывозащита систем повышенного давлениядостигается организационно- техническимимероприятиями; разработкой инструктивныхматериалов, регламентов, норм и правилведения технологических процессов;организацией обучения и инструктажаобслуживающего персонала; осуществлениемконтроля и надзора за соблюдением нормтехнологического режима, правил и нормтехники безопасности, пожарнойбезопасности и т.п.

Рассмотрим средства обеспечениябезопасности основных элементов системповышенного давления.

Для выделения вида опасностей натрубопроводы наносят предупреждающие(сигнальные) цветные кольца, количествокоторых определяет степень опасности.

Так, на трубопроводы взрывоопасных,огнеопасных, легковоспламеняющихсявеществ наносят красные кольца, безопасныхили нейтральных веществ – зеленые,токсичных веществ – желтые.

Дляобозначения глубокого вакуума, высокогодавления, наличия радиации используюттакже желтый цвет.

Все трубопроводы подвергают гидравлическимиспытаниям при пробном давлении на 25%выше рабочего, но не менее 0,2 МПа. Кромеиспытаний водой на прочность газопроводы,а также трубопроводы для токсичныхгазов испытывают на герметичностьвоздухом при пробном давлении, равномрабочему. Отсутствие утечки воздуха изсоединений проверяют мыльным растворомили погружением узлов в ванну с водой.

Стационарные сосуды, баллоны для храненияи перевозки сжатых, сжиженных ирастворенных газов: баллоны изготовляютмалой (0,4…12 л), средней (20…50 л) и большой(80…500 л) вместимости.

Наружная поверхность баллонов окрашиваетсяв определенный цвет, на нее наноситсясоответствующая надпись и сигнальнаяполоса. Сигнальная окраска баллонов ицистерн позволяет исключить образованиесмеси «горючее – окислитель» вследствиезаполнения емкостей рабочим телом, длякоторого они не предназначены.

Для предотвращения проникновения вопорожненный баллон посторонних газов,а также для определения (в необходимыхслучаях),какой газ находится в баллоне,или герметичности баллона и его арматурызаводы-наполнители принимают опорожненныебаллоны с остаточным давлением не менее0,05 МПа, а баллоны для растворенногоацетилена – не менее 0,05 и не более 0,1МПа.

Для обеспечения безопасной и безаварийнойэксплуатации сосуды и аппараты, работающиепод давлением, должны подвергатьсятехническому освидетельствованию послемонтажа и пуска в эксплуатацию периодическив процессе эксплуатации, а в необходимыхслучаях и внеочередному освидетельствованию.

Объемы, методы и периодичность техническогоосвидетельствования оговариваютсяизготовителем и указываются в инструкцияхпо монтажу и эксплуатации.

Сжиженные газы хранят и перевозят встационарных и транспортных сосудах –цистернах (сосуды для сжиженных газов),которые в случае хранения криогенныхжидкостей снабжены высокоэффективнойтепловой изоляцией.

В промышленности в настоящее времяиспользуют газгольдеры низкого ивысокого давления. Газгольдеры низкогодавления – это сосуды переменногообъема, давление газа в которых практическивсегда остается постоянным.

Из газгольдероввысокого давления расходуемый газподается сначала на редуктор, а затемк потребителю.

Газгольдеры высокогодавления обычно собирают из баллоновбольшого объема, изготовляемых нарабочее давление меньше 25МПа, на32 и 40МПа.

Для управления работой и обеспечениябезопасных условий эксплуатации сосудыв зависимости от назначения должны бытьоснащены:

– запорной или запорно-регулирующейарматурой;

– приборами для измерения давления;

– приборами для измерения температуры;

– предохранительными устройствами;

– указателями уровня жидкости.

На маховике запорной арматуры должнобыть указано направление его вращенияпри открывании и закрывании арматуры.

Арматура с условным проходом более 20мм, изготовленная из легированной сталиили цветных металлов, должна иметьпаспорт установленной формы, в которомдолжны быть указаны данные по химсоставу,механическим свойствам, режимомтермообработки и результатам контролякачества изготовления неразрушающимиметодами.

Каждый сосуд исамостоятельные полости с разнымидавлениями должны быть снабженыманометрами прямого действия. Манометрустанавливается на штуцере сосуда илитрубопроводе между сосудом и запорнойарматурой.

На шкале манометра владельцемсосуда должна быть нанесена краснаячерта, указывающая рабочее давление всосуде.

Манометр должен быть установлентак, чтобы его показания были отчетливовидны обслуживающему персоналу.

Сосуды, работающие при изменяющейсятемпературе стенок, должны быть снабженыприборами для контроля скорости иравномерности прогрева по длине и высотесосуда и реперами для контроля тепловыхперемещений.

Каждый сосуд должен быть снабженпредохранительными устройствами отповышения давления выше допустимогозначения. В качестве предохранительныхустройств применяются:

– пружинные предохранительные клапаны;

– рычажно-грузовые предохранительныеклапаны;

– импульсныепредохранительные устройства, состоящиеиз главного предохранительного клапанаи управляющего импульсного клапанапрямого действия;

– предохранительные устройства сразрушающимися мембранами (предохранительныемембраны);

– другие устройства, применение которыхсогласовано с Госгортехнадзором России.

Распространенным средством защитытехнологического оборудования отразрушения при взрывах являютсяпредохранительные мембраны.

Достоинствомпредохранительных мембран являетсяпредельная простота их конструкции,что характеризует их как самые надежныеиз всех существующих средств взрывозащиты.Кроме того, мембраны практически наимеют ограничений по пропускнойспособности.

Существенным недостаткомпредохранительных мембран являетсято, что после срабатывания защищаемоеоборудование остается открытым, этокак правило, приводит к остановкетехнологического процесса и к выбросув атмосферу всего содержимого аппарата.

Использование натехнологическом оборудовании взрывныхклапанов дает возможность устранитьэти негативные последствия, так какпосле срабатывания и сброса отверстиевновь закрывается и таким образом невызывает необходимости немедленнойостановки оборудования и проведениявосстановительных работ. К недостаткамвзрывных клапанов следует отнести ихбольшую инерционность по сравнению смембранами, сложность конструкции, атакже недостаточную герметичность,ограничивающую область их применения(они могут использоваться для взрывозащитыоборудования, работающего при нормальномдавлении).

Порядок и срокипроверки исправности действияпредохранительных устройств в зависимостиот условий технологического процессадолжны быть указаны в инструкции поэксплуатации предохранительныхустройств, утвержденных владельцемсосуда в установленном порядке.

Источник: https://studfile.net/preview/2900801/

5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ: Ни одно производство не обходится без использования систем

5.1. ВЗРЫВОЗАЩИТА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Ни одно производство не обходится без использования систем повышенного давления (трубопроводов, баллонов и емкостей для хранения или перевозки сжатых, сжиженных и растворенных газов, газгольдеров и т. д.). Любые системы повышенного давления всегда представляют потенциальную опасность.

Причинами разрушения или разгерметизации систем повышенного давления могут быть: внешние механические воздействия, старение систем (снижение механической прочности); нарушение технологического режима; конструкторские ошибки; изменение состояния герметизируемой среды; неисправности в контрольно-измерительных, регулирующих и предохранительных устройствах; ошибки обслуживающего персонала и т. д.

Взрывозащита систем повышенного давления достигается организационно-техническими мероприятиями; разработкой инструктивных материалов, регламентов, норм и правил ведения технологических процессов; организацией обучения и инструктажа обслуживающего персонала; осуществлением контроля и надзора за соблюдением норм технологического режима, правил и норм техники безопасности, пожарной безопасности и т. п. Кроме того, оборудование повышенного давления должно быть оснащено системами взрывозащиты, которые предполагают:

– применение гидрозатворов, огнепреградителей, инертных газов или паровых завес;

– защиту аппаратов от разрушения при взрыве с помощью устройств аварийного сброса давления (предохранительные мембраны и клапаны, быстродействующие задвижки, обратные клапаны и т. д.).

Рассмотрим средства обеспечения безопасности основных элементов систем повышенного давления.

Чтобы внешний вид трубопровода указывал на свойства транспортируемого вещества, введена их опознавательная окраска (ГОСТ 14202–69):

Вода . . …….

зеленый

Кислоты ………

оранжевый

Пар . ……

красный

Щелочи ………

фиолетовый

Воздух ………

синий

Горючие и негорючие жидкости

коричневый

Горючие и негорючие газы

желтый

Прочие вещества …..

серый

Для выделения вида опасностей на трубопроводы наносят предупреждающие (сигнальные) цветные кольца, количество которых определяет степень опасности.

Так, на трубопроводы взрывоопасных, огнеопасных, легковоспламеняющихся веществ наносят красные кольца, безопасных или нейтральных веществ –зеленые, токсичных веществ –желтые.

Для обозначения глубокого вакуума, высокого давления, наличия радиации используют также желтый цвет.

Все трубопроводы подвергают гидравлическим испытаниям при пробном давлении на 25 % выше рабочего, но не менее 0,2 МПа.

Кроме испытаний водой на прочность газопроводы, а также трубопроводы для токсичных газов испытывают на герметичность воздухом при пробном давлении, равном рабочему. Отсутствие утечки воздуха из соединений проверяют мыльным раствором или погружением узлов в ванну с водой.

Газопроводы прокладывают с небольшим уклоном в сторону движения газа, а буферную емкость снабжают в нижней части спускной трубой с краном для систематического удаления водяного конденсата и масла.

Паропроводы снабжают конденсатоотводчиками, которые позволяют предотвратить возникновение гидравлических ударов и пробок.

Во избежание возникновения напряжений от тепловых деформаций, особенно в наземных газопроводах, устраивают специальные компенсаторы в виде П-образного участка.

Трубопроводы со сжиженными газами прокладывают на расстоянии не менее 0,5 м от трубопроводов с горячим рабочим телом, при этом последние изолируют, а трубопроводы с легко замерзающими газами монтируют рядом с паропроводами и трубопроводами горячей воды.

Для предотвращения ожогов кислотами и щелочами фланцевые соединения трубопроводов закрывают защитными кожухами. Трубопроводы для транспортирования жидкого и газообразного кислорода периодически, а также после каждого ремонта обезжиривают.

Для обезжиривания используют тетрахлорид углерода, трихлорэтилен или тетрахлорэтилен.

Трубопроводы, по которым в зону реакции к аппарату или устройству подается горючее и окислитель, оборудуют специальными устройствами: автоматическими задвижками, обратными клапанами, гидравлическими затворами, огне- и взрывопреградителями.

Обратные клапаны препятствуют обратному ходу потока рабочего тела в случае начала процесса горения и появления противодавления (рис. 5.1).

Предохранительные затворы применяют в генераторах ацетилена для исключения обратного проскока пламени от газовой горелки сварочного агрегата в генератор (рис. 5.2).

Стационарные сосуды, баллоны для хранения и перевозки сжатых, сжиженных и растворенных газов: баллоны (ГОСТ 949–73*) изготовляют малой (0,4…12 л), средней (20…50 л) и большой (80….500 л) вместимости. Баллоны малой и средней вместимости изготовляют из углеродистой стали на рабочее давление 10, 15 и 20 МПа, из легированной стали –на 15 и 20 МПа.

У горловины каждого баллона на сферической части выбивают следующие данные: товарный знак предприятия-изготовителя, дату (месяц и год) изготовления (последнего испытания) и год следующего испытания; вид термообработки (нормализация, закалка с отпуском); рабочее и пробное гидравлическое давление (мПа); вместимость баллона, л; массу баллона, кг; клеймо ОТК; обозначение действующего стандарта.

Наружная поверхность баллонов окрашивается в определенный цвет, на нее наносится соответствующая надпись и сигнальная полоса. Окраска баллонов для наиболее часто используемых промышленных газов приведена ниже:

Газ

Окраска баллонов

Надпись

Цвет надписи

Цвет полосы

Азот

Черная

Азот

Желтый

Коричневый

Аммиак

Желтая

Аммиак

Черная

Тоже

Аргон, чистый

Серая

Аргон, чистый

Зеленый

Зеленый

Ацетилен

Белая

Ацетилен

Красный

Красный

Водород

Темно-зеленая

Водород

.Красный

Красный

Воздух

Черная

Сжатый воздух

Белый

Белый

Гелий

Коричневая

Гелий

Белый

Белый

Кислород

Голубая

Кислород

Черный

Черный

Диоксид углерода

Черная

Диоксид углерода

Желтый

Желтый

Для горючих и негорючих газов, не обозначенных в ПБ10-–115-–96 (Правила устройства и безопасной эксплуатации сосудов, работающих под давлением), предусмотрена следующая гамма цветов:

Газы

Окраска баллонов
Надпись

Цвет надписи

Цвет полосы

Все другие горючие газы

Красная

Наименование газа

Белый

Белый

Все другие негорючие газы

Черная

Наименование газа

Желтый

Желтый

Сигнальная окраска баллонов и цистерн позволяет исключить образование смеси «горючее – окислитель» вследствие заполнения емкостей рабочим телом, для которого они не предназначены.

Для предотвращения проникновения в опорожненный баллон посторонних газов, а также для определения (в необходимых случаях), какой газ находится в баллоне, или герметичности баллона и его арматуры заводы-наполнители принимают опорожненные баллоны с остаточным давлением не менее 0,05 МПа, а баллоны для растворенного ацетилена –не менее 0,05 и не более 0,1 МПа.

Взрыв ацетиленовых баллонов может быть вызван старением пористой массы (активированного угля в ацетоне), в которой растворяется ацетилен. Образование смеси горючее – окислитель в кислородных баллонах чаще всего связано с попаданием в его вентиль масел; в водородных–с загрязнением их кислородом, а также с появлением в них окалины.

Действующие в настоящее время Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ–115–96), распространяются на:

– сосуды, работающие под давлением воды с температурой выше 115 °С или другой жидкости с температурой, превышающей температуру кипения при давлении 0,07 МПа, без учета гидростатического давления;

– сосуды, работающие под давлением пара или газа свыше 0,07 МПа;

– баллоны, предназначенные для транспортирования и хранения сжатых, сжиженных и растворенных газов под давлением свыше 0,07 МПа;

– цистерны и бочки для транспортирования и хранения сжиженных газов, давление паров которых при температуре до 50 °С превышает давление 0,07 МПа;

– цистерны и сосуды для транспортирования или хранения сжатых, сжиженных газов, жидкостей и сыпучих тел, в которых давление выше 0,07 МПа создается периодически для их опорожнения;

– барокамеры.

Правила не распространяют своего действия на:

– сосуды, изготавливаемые в соответствии с «Правилами устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок», утвержденными Госатомэнергонадзором России, а также сосуды, работающие с радиоактивной средой;

– сосуды вместимостью не более 0,025 м3 независимо от давления, используемые для научно-экспериментальных целей;

– сосуды и баллоны вместимостью не более 0,025 м3, у которых произведение давления в МПа на вместимость в м3 не превышает 0,02;

– сосуды, работающие под давлением, создающимся при взрыве внутри их в соответствии с технологическим процессом;

– сосуды, работающие под вакуумом;

– сосуды, состоящие из труб с внутренним диаметром не более 150 мм без коллекторов, а также с коллекторами; выполненными из труб с внутренним диаметром не более 150 мм, а также ряд других типов сосудов (сосуды, устанавливаемые на морских и речных судах, самолетах и других летательных аппаратах; воздушные резервуары тормозного оборудования подвижного состава железнодорожного транспорта, автомобилей и других средств передвижения; сосуды специального назначения военного ведомства и т. д.);

– сосуды, на которые распространяется действие «Правил устройства и безопасной эксплуатации сосудов, работающих под давлением», до пуска их в эксплуатацию должны быть зарегистрированы в органах Госгортехнадзора России. Исключение составляют:

– сосуды 1-й группы, работающие при температуре стенки не выше 200° С, у которых произведение давления в МПа на вместимость в м3 не превышает 0,05, а также сосуды 2-й, 3-й, 4-й групп, работающие при указанной выше температуре, у которых произведение давления в МПа на вместимость в м3 не превышает 0,1 (к первой группе относятся сосуды, содержащие взрывоопасные и пожароопасные среды, или вещества 1-го и 2-го классов опасности по ГОСТ 12.1.007 независимо от температуры стенки и расчетного давления (выше 0,07 МПа). 2-я, 3-я, 4-я группы сосудов определяются расчетным давлением и температурой стенки, при условии, что сосуд не содержит среду, указанную для группы 1);

– аппараты воздухоразделительных установок и разделения газов, расположенные внутри теплоизоляционного кожуха;

– резервуары воздушных электрических переключателей;

– бочки для перевозки сжиженных газов, баллоны вместимостью до 100 л включительно, установленные стационарно, а также предназначенные для транспортировки и (или) хранения сжатых, сжиженных и растворенных газов;

– генераторы (реакторы) для получения водорода, используемые гидрометеорологической службой;

– сосуды, включенные в закрытую систему добычи нефти и газа (от скважин до магистрального трубопровода);

– сосуды для хранения или транспортировки сжиженных газов, жидкостей и сыпучих тел, находящиеся под давлением периодически при их опорожнении;

– сосуды со сжатым и сжиженными газами, предназначенные для обеспечения топливом двигателей транспортных средств, на которых они установлены; –

сосуды, установленные в подземных горных выработках.

Для обеспечения безопасной и безаварийной эксплуатации сосуды и аппараты, работающие под давлением, должны подвергаться техническому освидетельствованию после монтажа и пуска в эксплуатацию, периодически в процессе эксплуатации, а в необходимых случаях и внеочередному освидетельствованию.

Объемы, методы и периодичность технического освидетельствования оговариваются изготовителем и указываются в инструкциях по монтажу и эксплуатации. В случае отсутствия таких указаний техническое освидетельствование проводится по указанию «Правил» ПБ10– 115–96.

Так, для сосудов, не подлежащих регистрации в органах Госгортехнадзора России, установлена следующая периодичность: гидравлические испытания пробным давлением один раз в восемь лет, наружный и внутренний осмотр один раз в два года при работе со средой, вызывающей разрушение и физико-химическое превращение материала (коррозия и т. п.

) со скоростью не более 0,1 мм в год и 12 месяцев при скорости более 0,1 мм в год.

Сроки и объемы освидетельствований других типов сосудов и баллонов, зарегистрированных и не зарегистрированных в органах Госгортехнадзора России, также устанавливаются в зависимости от условий эксплуатации (скорость физико-химических превращений) и типа сосуда.

При гидравлических испытаниях испытываемую емкость заполняют водой, после чего давление воды плавно повышают до значений пробного давления, указанного в табл. 5.1.

Таблица 51 Давление при гидравлических испытаниях Тип сосуда

Пробное давление, МПа

Примечание

Кроме литых

Литые

Из не металлических материалов

Из не металлических материалов

Криогенные сосуды

Металлопластиковые

Рпр = 1,25 К*Ррас

Рпр = 1,50К Ррас

Рпр = 1,30 К Ррас

Рпр = 1,60 К Ррас

Рпр = 1,25 Ррас – 0,1 МПа

Рпр = (1,25Км + ?(1- Км)Ррас К
Ударная вязкость материала более 20 Дж / см Ударная вязкость материала менее 20 Дж /см

Наличие вакуума в изо< ляционном пространстве

К= ?го,?t –допустимое напряжение для материала сосуда или его элемента соответственно при 20 °С и расчетной температуре, МПа, Км – отношение массы металлоконструкции к общей массе сосуда; а = 1,3 –для неметаллических материалов с ударной вязкостью более 20 Дж/см2. а = 1,6 –для неметаллических материалов с ударной вязкостью 20 Дж/см2 и менее

Применяемая вода должна иметь температуру не ниже 5 и не выше 40 °С, если иное не оговорено в паспорте на сосуд. Разность температур стенки сосуда и окружающего воздуха во время испытаний не должна вызывать конденсации влаги на поверхности стенок сосуда. Использование сжатого воздуха или другого газа для подъема давления не допускается.

Давление в испытываемом сосуде контролируется двумя манометрами одного типа, предела измерения, одинаковых классов точности, цены деления.

Время выдержки пробного давления устанавливается разработчиком и обычно определяется толщиной стенки сосуда. Так, при толщине стенки до 50 мм оно составляет 10 мин, при 50–100 мм – 20 мин, свыше 100 мм – 30 мин.

Для литых неметаллических и многослойных сосудов независимо от толщины стенки время выдержки составляет 60 мин.

После выдержки под пробным давлением давление снижается до расчетного, при котором производят осмотр наружной поверхности сосуда, всех его разъемных и сварных соединений. Сосуд считается выдержавшим гидравлическое испытание, если не обнаружено:

– течи, трещин, слезок, потения в сварных соединениях и на основном металле;

–течи в разъемных соединениях;

– видимых остаточных деформаций, падения давления по манометру.

Гидравлическое испытание допускается заменять пневматическим при условии контроля этого испытания методом акустической эмиссии или другим, согласованным с Госгортехнадзором России.

Техническое освидетельствование установок, работающих под давлением, зарегистрированных в органах Госгортехнадзора, производит технический инспектор, а установки, не зарегистрированные в этих органах,–лицо, на которое приказом по предприятию возложен надзор за безопасностью эксплуатации установок, работающих под давлением.

Сжиженные газы хранят и перевозят в стационарных и транспортных сосудах –цистернах (сосуды для сжиженных газов), которые в случае хранения криогенных жидкостей снабжены высокоэффективной тепловой изоляцией.

Источник: https://bookucheba.com/jiznedeyatelnosti-bjd-bezopasnost/vzryivozaschita-tehnologicheskogo-oborudovaniya-17875.html

Book for ucheba
Добавить комментарий