5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Содержание
  1. Защита от статического электричества дома и на производстве
  2. Правила защиты от статического электричества на производстве
  3. ГОСТ 12.4.124-83 – Средства защиты от статического электричества (СЗСЭ)
  4. ГОСТ 12.1.018-93 – Пожаровзрывобезопасность статического электричества
  5. Как снять статическое электричество с волос и одежды в быту
  6. Как бороться со статическим электричеством дома и на производстве
  7. Статическое электричество.
  8. Методы борьбы со статическим электричеством.
  9. Защита трубопроводов и установок от статического электричества
  10. Что такое статическое электричество
  11. В чем опасность явления
  12. Источники статического электричества
  13. Защита трубопроводов и промышленного оборудования от статического напряжения
  14. Правила защиты
  15. Методы защиты
  16. Заземление оборудования
  17. Способы снятия статического напряжения
  18. Меры безопасности на производстве
  19. Средства защиты от статического электричества – Онлайн-журнал
  20. Защита от статического электричества в бытовых помещениях
  21. Защита от статического электричества на производстве
  22. Средства индивидуальной защиты работников от статического электричества
  23. Сиз от статического электричества
  24. 5.6. Средства защиты от статического электричества
  25. Защита от статического электричества
  26. Защита от статического электричества. Возникновение и действие
  27. Источники статического электричества
  28. Накапливанию электростатической энергии способствуют:
  29. Принцип действия
  30. Величина статического электричества
  31. Чтобы иметь представление о размерах возникающих статических зарядов, рассмотрим несколько примеров:
  32. Защита от статического электричества
  33. Защита в бытовых условиях
  34. Когда на одежде из химических волокон образуется статический заряд, то рекомендуется пользоваться «Антистатиком». Это специальный баллончик в виде аэрозоля, который продается в магазинах. Он снимает статическое электричество с одежды, тканей, с синтетических чехлов на сиденьях автомобиля, особенно в зимнее время, когда воздух сухой. Но, чтобы не использовать различные баллончики и химию, рекомендуется носить одежду из натуральных материалов: хлопка и льна
  35. В промышленном производстве применяют несколько способов сохранения функциональности оборудования:
  36. Защита от статического электричества делится по методам выполнения:
  37. Оптимизировать снижение электростатического заряда можно следующим образом:
  38. Такие задачи решают с помощью:
  39. Похожие темы:

Защита от статического электричества дома и на производстве

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Статическое электричество. Какие мысли приходят в голову при упоминании этого выражения?

Мне вспоминается детство и темная комната, где я снимаю свитер через голову и ощущаю легкие покалывания и вполне видимые разряды между волосами на голове и данным предметом гардероба. Даже если глаза закрыты, всё равно вижу, чудо да и только.

Если перенестись в воспоминаниях ближе к годам после университета, то можно вспомнить, как ставишь ссобойку в микроволновку и при прикосновении к дверце устройства, происходит легкий удар током, вызывающий опаску и недоумение.

По дороге на работу, особенно в зимний период, бывает шерстяной свитер и синтетическая куртка составляют дуэт с кожей. И вот ты прощаешься с любимым человеком до вечера, и между вашими губами в прямом смысле проходит электрический разряд, доставляя обоим дополнительные эмоции, усиливая сожаление о недолгой разлуке.

И уже на работе, находясь на составном полу над аккумуляторными батареями, можно потереть подошвой по поверхности пола, а затем дотронуться до напарника, что также даст ему разряд в плечи (ну тут еще подошва играет роль).

Но не стоит так делать, а то можно и несчастный случай устроить. В том же помещении, открыв дверь релейного шкафа, можно увидеть напульсник из резинового материала, который соединен с шиной заземления.

Дабы не угробить чувствительные микропроцессорные устройства, расположенные в шкафу.

Описанное выше напоминает о том, что мы повсеместно сталкиваемся со статическим электричеством, накапливаем и отдаем заряд – специально или случайно. Особенно это важно помнить, если профессия связана с производством, электроэнергетикой.

Физика возникновения и условия протекания статического электричества заслуживают отдельной статьи, в этой же поговорим о делах более приземленных… или заземленных =)

Правила защиты от статического электричества на производстве

Процессы, при которых может возникать электризация:

  • перекачивание углеводородных жидкостей по диэлектрическим трубам
  • заливка горючих жидкостей в емкости, изолированные от земли
  • просеивание, сушка и прочее

Существуют предприятия, где статическое электричество свыше допустимой нормы способно привести к:

  • взрыву, пожару, гибели персонала
  • электрическому разряду травмирующей величины
  • выводу из строя дорогостоящего оборудования, недоотпуску продукции, финансовым потерям
  • выводу из строя микропроцессорных систем, ложным срабатываниям, опять же потерям и недоотпуску продукции в виде электроэнергии

Однако, некоторые об этом не задумываются, так как эти факторы уже давно известны и были проведены мероприятия по исключению воздействия данных факторов на персонал и оборудование. Они прописаны в ГОСТах, нормативах. Тут важно знать требуемые нормативы и следить на своем предприятии об выполнениях данных предписаний.

ГОСТ 12.4.124-83 – Средства защиты от статического электричества (СЗСЭ)

Средства защиты делятся на групповые и индивидуальные.

Групповые:

  • заземление (сопротивление заземляющего устройства, предназначенного для защиты только от статического электричества по этому ГОСТу должно быть не более 100 Ом)
  • нейтрализаторы (обеспечивают ионизацию поверхности или среды различными способами)
    • Индукционный (путем воздействия поля электростатических зарядов)
    • Высоковольтный (путем подачи высокого напряжения на электроды)
    • Лучевой (под воздействием излучения ультрафиолетового, радиоактивного, лазерного, теплового)
    • Радиоизотопный (ионизация воздушной среды радиоактивными источниками)
    • Аэродинамический (ионизированная среда подается к поверхности потоками воздуха)
  • увлажняющие устройства
  • антиэлектростатические вещества (от их воздействия должно снижаться удельное объемное электрическое сопротивление Rоб материала до 107 Ом*м, а удельное поверхностное Rп – до 109 Ом; содержание паров антистатиков на производстве не должно превышать предельно допустимых концентраций (ПДК) ) по ГОСТ 12.1.005-88);
  • экранирующие устройства (должны быть заземлены согласно ПУЭ);

Индивидуальные антиэлектростатические (защита до 1кВ) защитные средства:

  • спецодежда (Rп < 107 Ом; R между землей и токопроводящей поверхностью одежды должно быть в пределах 106-108 Ом)
  • спецобувь (сопротивление между подпятником и ходовой стороной подошвы 106-108 Ом); применяется совместно с рассеивающим напольным покрытием;
  • кольца и браслеты (R между человеком и землей – 106-107 Ом);
  • средства защиты рук

ГОСТ 12.1.018-93 – Пожаровзрывобезопасность статического электричества

В данном нормативе вводится такой термин как искробезопасность. Для каждого объекта определяется величина энергии разряда статического электричества, которая может возникнуть на объекте W и минимальная энергия зажигания веществ и материалов Wmin.

Искроопасность (W) определяют следующие показатели:

  • электростатические величины: удельное объемное и поверхностное электрическое сопротивление, относительная диэлектрическая проницаемость, постоянная времени релаксации электрических зарядов
  • геометрические параметры
  • динамические характеристики процессов: скорость движения соприкасающихся сред или тел; величины взаимного давления тел; скорость деформации тел
  • параметры ОС: температура, давление, влажность, содержание аэрозолей, пыли, различных веществ

Далее должно выполняться условие: W

Более современный документ, чем описанные выше. Плеваться хочется от множества сокращений, которые реально надо выучить, а то ничего не поймешь: ЭСР, ЧЭСР, МЧТ. Хотя по сравнению с менеджментом систем, это мелочь.

Согласно ГОСТу необходимо разработать и внедрить программу управления ЭСР (электростатическими разрядами): базовую или комплексную.

В базовую должно входить:

  • заземляемые рабочие поверхности
  • антистатические браслеты для персонала
  • защитная упаковка для перемещения ЧЭСР-компонентов между процессами, (ч – это чувствительные)

В комплексной, кроме базовых вещей, дополнительно вводится:

  • заземление персонала через обувь и напольное покрытие
  • заземленная защитная одежда
  • ионизация воздуха на рабочем месте

Также не стоит забывать и про ГОСТ 12.1.045, в котором расписаны допустимые уровни напряженности электростатических полей в зависимости от времени пребывания персонала:

  • меньше 60 кВ/м до 1 часа;
  • меньше числа, равного 60 умножить на корень из времени пребывания в часах (1-9 часов)
  • если меньше 20 кВ/м, то время пребывания не нормируется.

Средства защиты от статического электричества должны быть предусмотрены во всех взрывоопасных, пожароопасных помещениях.

Как снять статическое электричество с волос и одежды в быту

Сразу оговорюсь, что, если при касании к посудомоечной машине, стиральной машине, плите, умывальнику или ванной у вас происходит щекочущий электроудар, возможно дело не в статическом электричестве, а в отсутствии заземления указанных деталей вашего интерьера.

Можно взять мультиметр и измерить с его помощью напряжение между металлическими частями бьющегося током устройства и землей.

Если бьет часто и неприятно, то вполне может оказаться вольт 110, которые естественно необходимо устранить самому или обратившись к электрику ЖЭСа.

Неспроста нельзя ставить плиту рядом с раковиной на кухне. Это дело серьезное – лучше вызвать спецов, чем страдать от последствий.

Хотя с другой стороны, если Вы накопили на себе статический заряд, то вполне он мог разрядиться о металлические детали электроприборов или рукомойника. Но, если это происходит на постоянной основе – сделайте выводы и примите мере по противодействию негативным факторам.

Основные два способа борьбы со статическим электричеством на бытовом уровне – это увлажнение или разряжение о металлические предметы.

Синтетическая (нейлон, лавсан, капрон) одежда трется о наше тело, в результате и создается статическое электричество. Шелковая рубашка при стирке трется о металлический барабан стиральной машины. Что касается снятия заряда с одежды, то существуют следующие советы:

  • использование спреев-антистатиков или лака для волос, главное не наносить лак туда, где он может испортить материал
  • отказ от ношения синтетики (но это так себе совет…)
  • средства для стирки с антистатическим эффектом
  • добавление при стирке теннисных или специальных шариков, либо 1-2 ложки столовой соды
  • использование металлических вешалок, булавок для контакта с одеждой
  • если стреляет куртка зимняя, смочите руки и проведите по ней (смахните электроны так сказать, хотя это совсем не такой процесс)
  • засунув вещь в холодильник, Вы опять же её увлажните, что благоприятно поможет убрать накопившиеся электроны

При наэлектризованности же волос, рекомендуется произвести следующие процедуры:

  • использовать деревянные или металлические расчески, гребни для приведения прически в порядок
  • антистатик для волос, увлажнитель, руку намочите и проведите
  • чтобы обезопасить кожу, нанесите на нее крем, Вы создадите защитный слой, который не даст коже тереться об одежду создавая условие для высвобождения свободно накопленного заряда

Плюс поспрашивайте близких или друзей – у каждого найдется свой способ защиты от статического электричества.

Сохраните в закладки или поделитесь с друзьями

Освежим в памяти опасные величины тока для человека

Последние статьи

Применение линейки в ворде

Где используется трансформаторное масло

Как избавиться от статического электричества

Расшифровка маркировок кабелей из СПЭ, БПИ и ПВХ

Самое популярное

Единицы измерения физвеличин

Напряжение смещения нейтрали

Источник: https://pomegerim.ru/electrobezopasnost/zaschita-ot-stati4eskogo-electrichestva.php

Как бороться со статическим электричеством дома и на производстве

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Приветствую Вас!

В этой статье Вы узнаете откуда берётся статическое электричество, как с ним бороться дома и на производстве и чего нужно опасаться при взаимодействии со статикой.

Статическое электричество – свободные электрические заряды, скапливающиеся на поверхности или внутри различных изолированных от земли тел.

Статическое электричество.

Откуда появляется статическое электричество?

В природе главными генераторами статического электричества являются:

  • Ветер. Трение о любые поверхности образует очаги напряженности на поверхностях.
  • Грозы и молнии. Ионизация воздуха. Заряженные частицы электризуют всё вокруг и часть уходит в землю.

Если грозы могут быть чаще всего летом, то ветер постоянен и присутствует практически всегда и везде – движение воздушных масс не остановить.

Кроме природы источниками генерации статического электричества являются:

  • Оборудование на производствах, приборы дома. За счёт электромагнитной индукции. Поля вокруг устройств.
  • Сам человек. Да, человек во время движения генерирует очень много статики и этот показатель может достигать до 10.000 Вольт, но при крайне низком токе и именно поэтому статическое электричество не доставляет много дискомфорта. Особенно ярко это выражается в зимнее время.

Методы борьбы со статическим электричеством.

В данном абзаце разделю дом и производство, но в целом подходы почти одинаковы и разница лишь в цене реализации защиты.

Защита от статического электричества на предприятиях и производствах.

1) На предприятиях от недостаточных мер антистатической защиты могут быть пожары, если это ткацкие предприятия. На предприятиях электронной промышленности будут страдать электронные компоненты, потому что они крайне нежные и боятся статических разрядов даже в 100 вольт.

Методы защиты:

– качественное заземление по всему периметру предприятия, организованное по стандартам данной отрасли.

– обязательное заземление всего парка станков и оборудования внутри предприятия.

– на предприятиях электронной промышленности даже пол имеет специальное устройство, позволяющее новым свободным зарядам стекать в землю через заземлители. Кроме этого перед входом на предприятие электронной промышленности стоят специальные турникеты, подойдя к которым человек самостоятельно себя разряжает стоя на пластинах и только после этого турникет откроется.

– Промышленные системы увлажнения воздуха. Они могут быть встроенными в систему вентиляции и кондиционирования, а могут быть отдельно стоящими, как на этой фото ниже. Влажность – ключевой параметр при борьбе с появлением статического электричества.

Промышленные системы увлажнения воздуха

Достаточной влажностью воздуха считается – 50%

Кроме всего вышесказанного отдельное внимание уделяется заземлению самого человека во время работы с оборудованием и делается это при помощи антистатического браслета(ESD), который человек одевает на руку. В свою очередь сам браслет подключается к специальной розетке для заземления, как на этой фото

Внутри розетки находится сопротивление номиналом 1 мегаОм, через который появляющийся ток плавно стекает в шину заземления, которая соединена с этой розеткой. Именно плавно, потому что быстро – это искра, а именно с ними мы и боремся.

Защита от статического электричества дома.

В домашних условиях тоже можно успешно бороться со статикой, но приёмов гораздо меньше, чем на производствах.

Не у всех в домах и квартирах имеется централизованное заземление. В своём доме его можно сделать, но в квартирах это проблематично. Подключаться к металлическим конструкциям щитовых нельзя. Потому что заземления бывают разные. Это опасно для жизни.

Для консультаций на тему заземления в вашем конкретном случае лучше вызвать специалиста – электрика. Наличие или отсутствие у вас заземления в розетках можно увидеть, глядя на внутреннюю часть электрических розеток в вашем доме или квартиры.

В той, в которой есть третий провод, есть дополнительные контакты – заземление, а в той, в которой нет заземления – всего 2 контакта, как на фото.

Если счастливчики могут заземлить свои электроприборы, то это здорово, но это далеко не все методы!

Первым и, пожалуй, единственным отличным способом борьбы с ударами статического электричества в домашних условиях является увлажнение воздуха!

Объяснение простое – влага, появившаяся в воздухе, является отличным переносчиком зарядов, в том числе и с человека.

То есть если в вашей квартире уровень влажности постоянно и без увлажнителя составляет не менее 45%, то увлажнитель вам не нужен. Я уверен, что вас током от приборов не бьёт(при условии, что приборы исправны).

Но если же в вашей квартире влажность составляет ниже 40%, то вам обязательно стоит приобрести увлажнитель и догнать уровень влажности до нормальных 50%

Измерить влажность воздуха и одновременно его температуру позволяет недорогой прибор – гигрометр, на фото.

Гигрометр

Кстати говоря многие цветы очень негативно относятся к сухому воздуху и плохо растут.

Дополнительно стоит добавить, что в зимнее время, при температурах ниже 0, влажность воздуха резко понижается, из-за того, что влага в воздухе кристаллизуется и перестаёт быть переносчиком зарядов. И поэтому проблема с ударами тока от приборов проявляет себя только зимой.

Что касается ударов электричеством зимой от машины, то тут спасенье только одно – перчатки.

Объяснение – в сухом зимнем воздухе при ходьбе человек в изолированной от земли обуви – генератор статики и показатель может легко достигать 10.000 вольт.

Машина в свою очередь стоит на улице и ею благополучно занимается ветер, трение которого также генерирует на корпусе машины статику. Машина на резиновых колёсах и тоже изолирована от земли.

И тут встречаются 2 конденсатора – человек и машина.

К примеру человек накопил 5000 Вольт, а машина 3000 Вольт. При касании происходит уравнивание потенциалов и на обоих становится по 4000 Вольт. И переход от человека на машину уже болезненно ощущается, а перетекло всего 1000 Вольт. Не пугайтесь, это нормальные цифры для статического электричества, больших токов в нем почти не бывает.

К машине в качестве заземлителя многие прикручивают(к металлическим её частям) антистатические ремешки, как на фото, но в этом случае зимой разряд с человека 5000 Вольт на заземленную машину с нулевым потенциалом будет гораздо сильнее и неприятнее, поэтому решение это не самое лучшее на мой взгляд.

Спасибо Огромное Вам за прочтение моей статьи до конца, если понравилось – поделитесь статьёй в соцсетях. Статья написана после публикации моего видео на эту же тему.

******************************************

Мой канал “Технологии производства электроники”

Монтаж печатных плат, консультации производств и разработка электроники – https://express-24.ru

Мой Блог на Boosty с интересными материалами – https://boosty.to/afire14

Источник: https://zen.yandex.ru/media/id/5c79635106de4f00b3dcd146/5df771ae2beb4900b1cb65bc

Защита трубопроводов и установок от статического электричества

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Статическое электричество способно навредить человеку в быту и на производстве. В последнем случае его неблагоприятное воздействие может привести к серьезным последствиям. Чтобы защититься от разрядов, необходимо устанавливать заземление, нейтрализаторы, использовать другие средства.

Что такое статическое электричество

Под статическим напряжением понимают самостоятельно возникающий и сохраняющийся в проводниках или диэлектриках электрический заряд. Он появляется вследствие перераспределения электронов, в результате которого часть из них приобретает одинаковый заряд.

Результат этих процессов – возникновение разряда при прикосновении к предмету, в котором появилось статическое электричество.

Чаще всего это происходит в предметах, которые изготовлены путем соединения частей из разных материалов (например, двух различных металлических сплавов).

Статическое электричество возникает из-за изменения заряда электронов

В чем опасность явления

Статическое электричество в некоторых случаях представляет опасность для человека. Она выражается в следующем:

  • Поражение электрическим током. Обычно разряд неопасен. Это обусловлено его небольшой мощностью. Однако если в каком-либо предмете накопился слишком сильный заряд, он может причинить существенный вред здоровью человека. Он может выражаться в травмах или повреждении кожных покровов в результате ожога. В отдельных случаях возможна смерть пострадавшего.
  • Выход из строя электроприборов. При попадании разряда на бытовую электронику она обычно выходит из строя. Для того, чтобы ее сломать, достаточно даже очень слабого разряда, совершенно не опасного для здоровья человека. Особенно чувствительны к подобному воздействию «умные» устройства: компьютеры, смартфоны.
  • Риск возникновения пожара. Во время высвобождения заряда обычно возникают маленькие искры. Если они попадут на легковоспламеняющееся вещество (горюче-смазочные материалы, высокомолекулярные растворители), произойдет возгорание, которое способно повлечь пожар.

Именно поэтому принимают меры, целью которых является защита от статического электричества, которая предотвращает его появление и минимизирует негативные последствия. Особенно она важна на производстве, где даже одна искра может привести к катастрофическим последствиям.

Объекты промышленности нуждаются в особой защите

Источники статического электричества

Источники статического напряженья можно разделить на две большие группы: естественные и искусственные.

Первые представляют собой элементы ландшафта, атмосферу. Электроэнергия в них возникает в результате естественных процессов. Наиболее известный пример – разряд молнии, который формируется в результате перемещения и смешивания воздушных масс в атмосфере и перераспределения зарядов электронов в воздухе.

Ярчайший пример природного разряда – молния

Вторые – рукотворные предметы, созданные человеком. Это могут быть:

  • элементы интерьера;
  • текстильные изделия;
  • трубопроводы;
  • электрические приборы;
  • трубы систем отопления.

Важно! Некоторая техника создается специально для генерации статического электричества. К ее числу относятся различные генераторы, сепараторы, окрасочные аппараты. Однако в большинстве случаев статическое напряжение возникает спонтанно и способно нанести существенный вред.

Защита трубопроводов и промышленного оборудования от статического напряжения

Наиболее тяжелые последствия разряд может вызвать, если затронет трубопроводы на объектах промышленности. Особенно тяжелыми будут последствия такого воздействия на химическом, нефтеперерабатывающем предприятии. Это касается и использующихся в быту газопроводов. Чтобы их избежать, принимают меры, которые направлены на защиту трубопроводов на производстве от статического электричества.

Правила защиты

Перечень подобных мер в Российской Федерации регулируется правилами, которые были утверждены 31 января 1971 года, и действуют по сей день.

Защита трубопроводов урегулирована специальными правилами

Методы защиты

Нормативный документ предусматривает следующие мероприятия, направленные на предотвращение возникновения зарядов статического электричества:

  • Заземление. Согласно правилам, все конструкции, в которых может образоваться заряд статического электричества, необходимо заземлять.
  • Уменьшение удельного поверхностного сопротивления в материале, где может образоваться заряд. Этот показатель зависит от общей площади предмета. Чем она меньше, тем меньше сопротивление.
  • Использование нейтрализаторов. Заряд статического электричества можно нейтрализовать с помощью устройств, которые созданы специально для этого. Чаще всего они генерируют индукционное поле или излучают радиоизотопы. Это предотвращает накопление одинакового заряда в большом количестве электронов и возникновение статического напряжения.

Заземление оборудования

Один из самых действенных и распространенных способов защиты от статического электричества – заземление. В результате применения этого метода все предметы, в которых может образоваться заряд, образуют единую цепь, подсоединенную, в свою очередь, к зануляющему проводнику. Он, как правило, представляет собой помещенную в почву стальную конструкцию.

Заземление – самый распространенный и эффективный способ защиты

К сведению! Польза защитного заземления в том, что при образовании заряда он сразу уходит на «ноль», проделывая при этом путь через все элементы цепи.

Заземлить на производстве необходимо все металлические и неметаллические конструкции, обладающие токопроводностью. Среди них:

  • трубопроводы;
  • агрегаты и аппараты;
  • термоизоляция;
  • вентиляционные короба;
  • отдельно стоящие машины;
  • емкости для дробления, распыления, разбрызгивания перерабатываемых продуктов.

Чтобы установить заземление, понадобится выполнить следующие действия.

  • Установить заземлитель. Он представляет собой устройство, которое находится в непосредственном контакте с землей (она в данном случае играет роль «нуля»).
  • Подсоединить трубопровод к заземлителю. Участок металлической конструкции с помощью проводника присоединяют к ранее установленному устройству для заземления.
  • Подключение к системе заземления остального оборудования. Непосредственно к трубопроводу с помощью проводников подсоединяют другие металлические предметы (вентиляционные короба, термоизоляцию). По действующим нормативам подключение должно быть каждые 40–50 метров.

Так выглядит заземлитель

Важно! Заземлять необходимо не только стальные, но и полимерные трубопроводы. Требования здесь несколько иные. Сопротивление между любой точкой трубопровода и заземляющим контуром не должно быть более 100 000 кОм (допускается небольшая статистическая погрешность). Это может потребовать заземления в нескольких местах.

Способы снятия статического напряжения

В руководстве по защите от статического электричества также предусматрен ряд мер, направленных на минимизацию вредоносных последствий воздействия разряда и его снятие. Вот основные из них:

  • очистка проходящих по трубопроводам газов и жидкостей от посторонних примесей (например, твердых частиц);
  • недопущение распыления и разбрызгивания веществ;
  • строгое соблюдение требований к скорости движения по трубопроводу.

Чтобы не допустить попадание посторонних примесей в трубопровод, используют фильтры. На фото изображен газовый

Меры безопасности на производстве

Чтобы обезопасить работников предприятия от неблагоприятного воздействия статического электричества, соблюдают следующие меры безопасности:

  • Обеспечивают постоянный контакт работника и контура заземления. Тело человека, работающего на производстве, должно постоянно контактировать с заземленной цепью. Это обеспечивает быстрое прохождение разряда через ткани без причинения какого-либо вреда.
  • Хорошо в этом плане проводить увлажнение воздуха, тогда внезапные молнии статического электричества возникают не так часто, как при малом содержании испаренной жидкости в атмосфере. При увеличении ее количества риск их появления значительно уменьшается.
  • Проводят ионизацию. Если насыщать воздух положительно и отрицательно заряженными частицами, возможность «перекоса» в одну из сторон, вызывающего появление заряда, снижается.

Воздух в цехах насыщают заряженными частицами с помощью промышленных ионизаторов

https://www.youtube.com/watch?v=fJiduPx8HCY

Статическое напряжение – самопроизвольно возникающий электрический заряд. Его появление особенно опасно на производстве (в трубопроводах, системах вентиляции), так как может вызвать возгорание, детонацию.

Понятие статистического электричества и перечень способов защиты от него приведены в специальных правилах.

Применяют такие средства, как заземление, уменьшение удельного поверхностного сопротивления, увеличение влажности.

Источник: https://rusenergetics.ru/polezno-znat/zaschita-ot-staticheskogo-elektrichestva

Средства защиты от статического электричества – Онлайн-журнал

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Статическое электричество возникает из-за перераспределения частиц, имеющих различные электрические заряды, между разными телами или в пределах одного тела.

В твердых телах такими частицами являются электроны, а в жидких и газообразных – электроны и положительно заряженные ионы.

При таком распределении между телами возникает разность потенциалов, которая еще более увеличивается при последующем удалении тел друг от друга.

Причинами возникновения статического электричества могут являться:

  • взаимодействие тел между собой при движении (трение, вращение);
  • резкий перепад температур;
  • воздействие излучений различного характера;
  • разрезание тел на части.

Это явление может представлять опасность, поэтому от него предусматривают специальную защиту, позволяющую полностью ликвидировать или существенно снизить его силу.

В быту люди часто сталкиваются с образованием статического электричества: при расчесывании волос, снятии одежды, поглаживании шерсти домашних животных.

Для жизни человека это не опасно, так как при разряде статического потенциала возникает очень небольшой ток, который не может нанести организму существенного вреда. Следствием разряда является лишь некоторый дискомфорт.

Чтобы его избежать, достаточно использовать деревянную расческу, медленнее снимать с себя одежду и не гладить кошек в сухую и морозную погоду.

Однако электронной технике статическое электричество может нанести ощутимый вред. Часть компонентов, из которых состоит электронное изделие, не рассчитано на действие столь высоких напряжений. Воздействие статического электричества на эти элементы может ухудшить их характеристики и даже вывести из строя устройство целиком.

Если же воздействию статического электричества подвергаются легковоспламеняющиеся жидкости (ЛВЖ), то это может привести к их возгоранию или взрыву их паров.

Сами жидкости при транспортировке могут накапливать в своем объеме статический заряд, но он может возникнуть и от приблизившегося к ним человека или механизма.

Поэтому на предприятиях, на которых выполняются какие-либо действия с ЛВЖ, особое внимание уделяют заземлению всех движущихся механизмов, металлоконструкций, трубопроводов, а также материалам, из которых изготовлена спецодежда и обувь работников.

Защита от статического электричества в бытовых помещениях

Хоть для человека действие статического электричества и является всего лишь источником неприятных ощущений, но при разряде все-таки существует риск что-нибудь опрокинуть или даже получить травму.

Да и постоянное ощущение на себе действия этих разрядов может принести серьезный дискомфорт. Поэтому в быту иногда приходится бороться с этим явлением. В помещениях регулярно проводят влажную уборку, проветривают и увлажняют воздух.

Много пользы при защите от статического электричества приносит применение строительных материалов с антистатическим покрытием.

Защита от статического электричества на производстве

В отличие от бытовых помещений, защита от статического электричества на предприятиях имеет большую важность.

В основном это касается предприятий по производству электронных изделий и компонентов, а также по производству и транспортировке ЛВЖ.

Частным случаем защиты от статического электричества являются устройства молниезащиты, служащие для предупреждения поражения молнией людей, оборудования и возникновения аварийных ситуаций.

Комплекс мероприятий, необходимый в каждом конкретном случае, указывается в государственных стандартах, правилах промышленной безопасности, технологических регламентах и инструкциях по охране труда.

В основном все защитные мероприятия разделяются на несколько этапов:

  • предотвращение возникновения зарядов;
  • уменьшение до минимально возможного уровня величины зарядов;
  • нейтрализация зарядов.

Для исключения появления статических зарядов служит соединение проводящих ток частей оборудования между собой и с контуром заземления, сопротивлением не более 100 Ом. Заземлению также подлежат все трубопроводы, даже те, материал которых не проводит электрический ток. Для этого в них предусматривают оболочки и покрытия из токопроводящих материалов.

Снижения величин уровней статических зарядов добиваются путем выбора материалов, из которых изготавливается оборудование, подбора технологических параметров, при которых работа оборудования не сопровождается образованием статических потенциалов (например, скоростей движения жидкостей в трубопроводах) и так далее.

Поверхности, склонные способствовать образованию статического электричества, регулярно обрабатываются специальными реагентами, называемыми антистатиками, или выполняются токопроводящими. Также могут применяться ионизаторы или увлажнители воздуха.

Средства индивидуальной защиты работников от статического электричества

К таким средствам относятся спецодежда и спецобувь. Также на предприятиях, выпускающих электронные компоненты, обязательным является применение токопроводящего браслета, надеваемого на руку работника и связанного с контуром заземления.

Источник: http://electric-tolk.ru/sredstva-zashhity-ot-staticheskogo-elektrichestva/

Сиз от статического электричества

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Статическое электричество, как правило являющееся результатом трения, явление довольно-таки безобидное для человека. Однако, в случае его возникновения в определенных условиях, последствия могут быть весьма опасными. Ряд технологических процессов (работа с ГСМ, газом, взрывоопасное производство и тому подобные) должны исключать риски образования искр даже от статического электричества.

Помимо создания угрозы пожара или взрыва, статическое напряжение может отрицательно влиять на технологический процесс. Например, при производстве микросхем.

Давайте остановимся на выборе СИЗ для этих опасных или деликатных процессов.

Статическое электричество генерируется, когда объекты состоящие из разнородного вещества движутся относительно друг друга. Если один из объектов непроводящий, например, тележка с резиновыми колесами, электрический заряд может накапливаться и вызывать искры. Искра возникнет при появлении разности потенциалов между контактирующими поверхностями.

Чтобы предотвратить образование статических зарядов или отвести заряды, генерируемые на объекте, необходимо обеспечить его заземление. Заземление инструмента или электрической системы означает намеренное создание пути с низким сопротивлением, который соединяется с землей. Это предотвращает накопление напряжения.

Вполне реальную опасность для взрыво- и пожароопасных условий представляет статические заряды накапливаемые на сотрудниках, контактирующих с движущимися диэлектриками. Энергия заряда таких искр может составлять от 2,5 до 7,5 мДж. Этой энергии бывает достаточно, чтобы произошло воспламенение пыли, не говоря уже о горючей среде.

В соответствии с ГОСТ Р 53734.4.9-2012 (МЭК 61340-4-9:2010) Электростатика. Часть 4.9. Методы испытаний для прикладных задач. Одежда.

Антистатическая одежда может подавлять или иным способом влиять на генерируемое одеждой, находящейся под нею, электрическое поле.

Тем не менее, если одежда не заземлена, на проводящих или рассеивающих поверхностях может накапливаться заряд, превращая одежду в источник заряда.

Заземляемая антистатическая одежда может обеспечивать больший уровень подавления, если ткань с низким сопротивлением заземлена.

Система заземляемой одежды обеспечивает заземление, которое подавляет электрическое поле от носимой под антистатической одеждой неантистатической одежды и связывает кожу человека с определенной точкой заземления.

Заземляемые системы антистатической одежды также могут быть использованы совместно с непрерывными или постоянными системами мониторинга, похожими на непрерывный мониторинг заземляющих браслетов в защищенных от статического электричества помещениях.

ГОСТ 12.4.124-83 ССБТ. Средства защиты от статического электричества. Общие технические требования. В зависимости от назначения делит средства индивидуальной защиты от статического электричества на:

  • Специальную одежду антиэлектростатическую.
  • Специальную обувь антиэлектростатическую;
  • Предохранительные приспособления антиэлектростатические (кольца и браслеты);
  • Средства защиты рук антиэлектростатические.

Защитные свойства обеспечиваются за счет применения токопроводящих материалов.

Для изготовления антиэлектростатической специальной одежды должны применяться материалы с удельным поверхностным электрическим сопротивлением не более 107 Ом. (10 МОм)

Сопротивление подошвы специальной обуви от 106 до 108 Ом (от 1 МОм до 100 МОм)

Антиэлектростатические кольца и браслеты должны обеспечивать электрическое сопротивление в цепи человек – земля от 106 до 107 Ом (от 1 МОм до 10 МОм).

Антиэлектростатический браслет

Давайте рассмотрим риски и возможные способы защиты от статического электричества на примере пластиковой трубы

Статический заряд на пластиковой трубе может создаваться трением во время физического воздействия на трубу при ее хранении, транспортировке, монтаже или ремонте.

 Кроме того, поток среды (газа) в подключенной пластиковой трубе, содержащий твердые частицы в виде накипи, ржавчины или грязи, может так же генерировать статическое электричество.

Способствуют накоплению заряда такие элементы как колена труб, клапаны.

Рекомендуемыми мерами предосторожности будут:

  1. Использование заземленного ленточного проводника, намотанного вокруг трубы или проложенного в контакте со всем участком трубопровода.
  2. Использование заземленных инструментов.
  3. Использование соответствующих средств индивидуальной защиты.

Источник: http://okhrana-truda.com/blog/219-siz-ot-staticheskogo-elektrichestva.html

5.6. Средства защиты от статического электричества

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Величинапотенциалов зарядов искусственногостатического электричества на ременныхпередачах и лентах конвейеров можетдостигать 40 кВ, при механической обработкепластмасс и дерева до 30 кВ, при распылениикрасок до 12 кВ. При соответствующихусловиях происходит пробой воздушнойпрослойки, сопровождающийся искровымразрядом (пробивное сопротивлениеабсолютно сухого воздуха составляет3000 кВ/м), что может инициировать взрывили пожар.

Основныемероприятия, применяемые для защиты отстатического электричества производственногопроисхождения, включают методы,исключающие или уменьшающие интенсивностьгенерации зарядов, и методы, устраняющиеобразующиеся заряды.

Интенсивностьгенерации зарядов можно уменьшитьсоответствующим подбором пар тренияили смешиванием материалов такимобразом, что в результате трения одиниз смешанных материалов наводит зарядодного знака, а другой –другого.

Внастоящее время создан комбинированныйматериал из найлона и дакрона,обеспечивающий защиту от статическогоэлектричества по этому принципу.

Изменениемтехнологического режима обработкиматериалов также можно добиться сниженияколичества генерируемых зарядов(уменьшение скоростей обработки,скоростей транспортирования и сливадиэлектрических жидкостей, уменьшениесил трения).

Призаполнении сыпучими веществами илижидкостями диэлектриками резервуаровна входе в них применяют релаксационныеемкости, чаще всего в виде заземленногоучастка трубопровода увеличенногодиаметра, обеспечивающего стеканиевсего заряда статического электричествана землю.

Образующиесязаряды статического электричестваустраняют чаще всего путем заземленияэлектропроводных частей производственногооборудования. Сопротивление такогозаземления должно быть не более 100 Ом.

При невозможности устройства заземленияпрактикуется повышение относительнойвлажности воздуха в помещении. Возможноувеличить объемную проводимостьдиэлектрика, для чего в него вносятграфит, ацетиленовую сажу, алюминиевуюпудру, а в жидкие диэлектрики – специальныедобавки.

Для ряда машин и агрегатовнашли применение нейтрализаторыстатического электричества (коронногоразряда, радиоизотопные, аэродинамическиеи комбинированные).

Во всех типах этихустройств путем ионизации воздухавблизи элемента конструкции, накапливающегозаряд статического электричества,образуются ионы, в том числе со знаком,противоположным знаку заряда, что ивызывает его нейтрализацию.

Ксредствам индивидуальной защиты отстатического электричества относятсяэлектростатические халаты и специальнаяобувь, подошва которой выполнена изкожи либо электропроводной резины, атакже антистатические браслеты.

Значительнобольшую опасность представляетатмосферное статическое электричество,эффективным средством защиты от которогоявляется молниезащита. Она включаеткомплекс мероприятий и устройств,предназначенных для обеспечениябезопасности людей, предохранениязданий, сооружений, оборудования иматериалов от взрывов, загораний иразрушений, возможных при воздействиимолний.

Длявсех зданий и сооружений, не связанныхс производством и хранением взрывчатыхвеществ, а также для линий электропередачи контактных сетей проектирование иизготовление молниезащиты должновыполняться согласно «Инструкции поустройству молниезащиты зданий исооружений» РД 34.21.122–87.

Постепени защиты зданий и сооружений отвоздействия атмосферного электричествамолниезащита подразделяется на трикатегории. Категория молниезащитыопределяется назначением зданий исооружений среднегодовой продолжительностьюгроз, а также ожидаемым числом пораженийздания или сооружения молнией в год.

Ожидаемоегодовое число поражений молниейпрямоугольных зданий и сооружений

N=(S+ 6hзд)(L-6hзд)-7,7h2здn10-6,

длясосредоточенных зданий и сооружений(башен, вышек, дымовых труб и т. д.)

N=9πh2здn10-6,

гдеS, Lширинаи длина зданий, м (для зданий исооруженийсложной конфигурации в плане при расчетеN вкачествеSиLпринимают ширину и длину наименьшегоописанного прямоугольника);hнаибольшая высота здания илисооружения, м;п –среднегодовоечисло ударов молний в 1 км2земнойповерхности (удельная плотность ударовмолний в землю) в месте расположениязданий или сооружений.

Рис. 5.13. Зоны защиты различных видов молниеотводов: а–одиночный стержневой;б–двойной стержневой;в–тросовый

Информациюо средней за год продолжительности грозможно получить в местном отделенииРосгидромета либо воспользоватьсякартой СССР, представленной в РД34.21.122–87.

Зданияи сооружения, отнесенные к I и II категорияммолниезащиты, должны быть защищены отпрямых ударов молнии, вторичных проявлениймолнии и заноса высокого потенциалачерез наземные (надземные) и подземныеметаллические коммуникации. Здания исооружения, отнесенные к III категориимолниезащиты, должны быть защищены отпрямых ударов молнии и заноса высокогопотенциала через наземные (надземные)металлические коммуникации.

Длясоздания зон защиты применяют одиночныйстержневой молниеотвод; двойнойстержневой молниеотвод; многократныйстержневой молниеотвод; одиночный илидвойной тросовый молниеотвод. В качествепримера на рис. 5.13 приведена конфигурацияи размеры зон защиты некоторых типовмолниеотводов.

Контрольза средствами обеспечения электробезопасности,и в частности за соответствием ихтребованиям безопасности, возложен наслужбу главного энергетика и электриковподразделений.

Источник: https://studfile.net/preview/5664448/page:28/

Защита от статического электричества

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Изучение проблемы статического электричества вызвано всё более широким применением полимерных материалов, синтетических тканей и волокон, способных накапливать большие заряды статического электричества во время переработки или эксплуатации. Вредное проявление статического электричества влечёт за собой самые различные последствия:

– во-первых, при высоких потенциалах статического электричества, достигающих десятков тысяч вольт, во взрыво- или пожароопасной среде в результате искровых пробоев возникают взрывы и пожары с человеческими жертвами и тяжёлыми травмами;

– во-вторых, статическое электричество оказывает неблагоприятное воздействие на здоровье работающих с электризующимися материалами;

– в-третьих, в ряде производств вследствие высокой электризации нарушаются технологические процессы, появляется брак, снижается производительность труда.

Наибольшую опасность статическое электричество представляет для производств, связанных с переработкой и транспортировкой легковоспламеняющихся веществ и материалов, особенно в условиях взрывоопасной воздушной среды.

Применение синтетических полимеров и диэлектриков во взрыво- и пожароопасных условиях практически всегда связано с реальной угрозой воспламенения, так как тепловая энергия, выделяющаяся при искровом разряде, во много раз превышает минимальную энергию воспламенения воздушных смесей – метана, ацетилена, паров бензина, ацетона и многих других веществ.

Помимо вредного влияния на организм человека и непосредственной опасности от взрывов и пожаров, статическое электричество в ряде случаев является причиной снижения производительности труда. Вредная электризация наблюдается на многих предприятиях: в химической, полиграфической, текстильной и лёгкой, нефтеперерабатывающей и нефтедобывающей промышленности.

Статическое электричество является помехой почти для половины технологических процессов.

Опасность чрезмерного накопления электростатических зарядов ограничивает скорость налива нефтепродуктов до 1 м/с и заставляет вести многие технологические процессы (например, получение полипропилена) под давлением инертных газов, что существенно снижает производительность и повышает себестоимость продукции.

Электризация приводит к пробою синтетических трубопроводов, нарушению герметичности изделий, выводу из строя полупроводниковых приборов, засвечиванию светочувствительных материалов, налипанию пыли, снижению качества продукции. Масштабы вредного и опасного проявления статического электричества таковы, что защита от него стала одной из актуальнейших проблем.

Статическое электричество наносит большой ущерб. Поэтому нужны разработка и внедрение эффективных мер для защиты от электризации на разных производствах. Уже есть достаточное количество методов и средств, предотвращающих нежелательную электризацию веществ и материалов.

Из всего многообразия существующих мер защиты от статического электричества наиболее эффективными являются следующие: увеличение влажности воздуха; заземление оборудования и человека; применение антистатических добавок; ограничение скоростей транспортировки вещества; нейтрализация зарядов статического электричества.

Установлено, что при увеличении влажности воздуха на поверхно­сти материалов образуется тонкая плёнка влаги с растворёнными в ней солями. Такая плёнка обладает полупроводящими свойствами, что спо­собствует рассеянию зарядов. Но этот эффект не наблюдается, если водяные пары не адсорбируются на гидрофобных поверх­ностях (полимерные материалы, волокна и пр.

) или температура воздуха в рабочей зоне выше, чем температура, при которой плёнка может удер­живаться на диэлектрике, а также когда скорость движения диэлектрика больше, чем скорость образования адсорбированной водяной плёнки (это зависит от химического строения вещества и степени загрязнения по­верхности).

Там же, где увеличение относительной влажности воздуха яв­ляется эффективным средством борьбы с электризацией, многими исследованиями показано, что при повышении влажности воздуха до 65–80 % электризация почти полностью устраняется.

На практике увлажнение в помещениях производят с помощью конди­ционирующих устройств, специальных увлажнителей, а в ряде случаев посредством периодической влажной уборки.

В ГОСТ 12.4.124-83 ССБТ. «Средства защиты от статического элек­тричества. Общие технические требования» [95] описаны различные технические средства для защиты людей от статического электричества.

Обязательным мероприятием, позволяющим устранить электростатические заряды с металлического оборудования, является заземление. Незаземлённое оборудование является источником повышенной опасности, так как энергия искры с металлических конструкций во много раз превышает энергию разряда с диэлектрика.

Оборудование считается электростатически заземлённым, если сопротивление утечки в любой точке при самых неблагоприятных условиях (низкая влажность воздуха и т. п.) не превышает 106 Ом.

К электростатическим заземлителям не предъявляются столь жёсткие требования, как при заземлении оборудования с целью защиты человека от поражения электрическим током. Сопротивление заземлителя при отведении электрических зарядов допускается до 100 Ом.

Надёжность соединения оборудования с заземлителями обычно обеспечивают сваркой, реже – болтовым креплением. При выполнении фланцевых соединений сопротивление между соседними фланцами не должно быть ниже 10 Ом, при этом применять специальные перемычки не обязательно.

При установке временных заземлений (цистерны, измерительные устройства и т. д.) выбор типа заземлителей определяется только их механической прочностью.

В ряде случаев необходимо заземлять человека, который может наэлектризоваться при выполнении работ или из-за электростатической индукции. Для этого используют электропроводящие полы, заземлённые площадки вблизи рабочих мест в сочетании с проводящей либо полупроводящей обувью.

К электропроводящим полам относятся незагрязнённые краской, маслами и прочими изолирующими веществами бетонные, пенобетонные и ксилолитовые полы. При достаточно высокой относительной влажности деревянные полы тоже хорошо отводят статическое электричество.

Если используют заземлённые металлические площадки вблизи рабочего места, то необходимо полностью исключить возможность прикосновения человека к токоведущим частям опасного напряжения.

Возможности использовать специальную защитную одежду описаны в ГОСТ Р ЕН 1149-5-2008 ССБТ «Одежда специальная защитная. Элект­ростатические свойства. Часть 5. Общие технические требования» [49].

Придать антистатические свойства непроводящим полам, покрытым линолеумом, релином, полихлорвиниловой плиткой, можно влажной уборкой 10–20%-ным водным раствором хлористого кальция.

Но повышать электропроводность полов неэффективно без применения проводящей обуви.

Токопроводящей является обувь: 1 – с подошвой из слегка увлажнённой кожи или полупроводящей резины; 2 – пробитая медными, латунными или алюминиевыми заклёпками, не искрящими при ходьбе.

При переработке и применении материалов с удельным электрическим сопротивлением более 106–107 Ом·см (для органических жидкостей более 109–1010 Ом·см) заземление металлических конструкций – лишь до-

полнительное мероприятие по отводу электростатических зарядов.

Следует отметить, что жидкие и газообразные диэлектрики, имеющие очень большое удельное сопротивление (выше 1017–1018 Ом·см), практически не электризуются. Такие высокие удельные сопротивления имеют «абсолютно чистые» материалы, не содержащие примесей. В этой связи тонкая очистка веществ может быть рекомендована как одна из мер по защите от электризации жидкостей и газов.

В большинстве же случаев эффективным средством защиты от статического электричества является снижение удельного объёмного сопротивления веществ. Наиболее распространённым является метод введения проводящих композиций в структуру материала при его изготовлении. Таким образом получены проводящие резины, линолеумы, антистатические краски и лаки, неэлектризующиеся пластмассы.

В качестве электропроводных композиций применяют сажу, графит, порошкообразную медь, серебро, лепестковый никель и другие добавки. Для увеличения поверхностной проводимости твёрдых диэлектриков разработаны различные пасты, составы, эмульсии, наносимые на электризующуюся поверхность. Успешно применяется металлизация поверхностей, покрытие хлористыми и фтористыми соединениями.

Снятие зарядов с внешней поверхности рукавов и трубопроводов осуществляется иногда с помощью навивки на них спирали из медного или стального заземлённого проводника. Транспортерные ленты и некоторые ткани прошивают тонкими электрическими проводниками, а также применяют антистатические ткани.

Эффективным способом борьбы со статическим электричеством в текстильной и ряде других отраслей промышленности является смешение (комбинация) электризующихся волокон или подбор контактных пар.

Например, у тканей из комбинации двух электризующихся волокон – нейлона и дакрона – необходимый эффект достигается тем, что каждое волокно в отдельности при трении электризуется взаимно нейтрализующимися зарядами противоположных знаков.

Подбирая подобным образом контактные пары при изготовлении деталей технологического оборудования, можно устранить проявления статического электричества во многих производствах.

Для снижения электростатических зарядов иногда идут по пути уменьшения площади соприкосновения электризующегося материала с рабочей поверхностью деталей машин и приспособлений. В этом случае поверхности рабочих столов, рабочих валов машин и другое оборудование покрывают сеткой или делают ребристыми.

Как известно, уменьшение электризации можно обеспечить при снижении скоростей ведения технологических процессов, однако эта мера в условиях современного производства крайне нежелательна. Поэтому для устранения электризации при транспортировании электризующихся жидкостей ограничивают скорость лишь на одном из участков трубопровода.

Это мероприятие известно под названием «релаксация электростатических зарядов». Принцип релаксации основан на выдерживании диэлектрической жидкости в течение некоторого времени в относительном покое в релаксационной ёмкости (участок трубопровода значительно большего диаметра). За время нахождения жидкости в релаксаторе заряды успевают стечь на его заземлённые стенки.

Установлено, что релаксационные емкости на 95–98 % снимают электростатические заряды.

При заполнении резервуаров диэлектрическими жидкостями возможно образование зарядов при разбрызгивании.

Поэтому наполнение емкостей начинается при малой скорости движения электризующихся жидкостей с постепенным увеличением её по мере заполнения резервуара.

Нельзя допускать резких перегибов трубопроводов и внутри них не должно быть выступающих частей, так как это приводит к дополнительной электризации транспортируемых жидкостей.

Самостоятельную группу защитных средств представляют нейтрализаторы статического электричества. Принцип работы всех нейтрализаторов основан на генерации ионов в зоне заряженного материала.

Эти ионы притягиваются силами поля заряженного вещества и нейтрализуют заряды.

Ионизация воздуха происходит при облучении ультрафиолетовыми или рентгеновскими лучами, тепловым, инфракрасным или радиоактивным излучением, а также за счёт коронного разряда.

В настоящее время для ионизации воздушной среды обычно приме-

няют радиоизотопное α- и β-излучение, электрический коронный разряд и так называемый скользящий разряд. Во взрывобезопасных производствах для борьбы с электризацией обычно применяют ионизаторы с коронным разрядом на остриях.

Они дают максимальную плотность ионизации.

В зависимости от того, что в этом случае важнее обеспечить – минимальный остаточный заряд или нейтрализацию большого количества электричества – применяются электрические или индукционные нейтрализаторы.

Индукционный нейтрализатор представляет собой токопроводящий или диэлектрический стержень, на котором закреплены заземлённые иглы или метёлочки из проволоки.

При установке нейтрализатора над заряженной поверхностью у концов игл создается настолько сильное электрическое поле, что происходит ударная ионизация, в результате которой образующиеся ионы нейтрализуют заряды на поверхности наэлектризованного материала.

Основное отличие электрических нейтрализаторов от индукционных заключается в том, что на иглы подаётся высокое (10–15 кВ) постоянное или переменное напряжение от специального источника, что повышает эффективность нейтрализации.

Эффективность нейтрализаторов чаще всего оценивается по величине ионизационного тока, протекающего через нейтрализатор на заземлённое оборудование. Этот ток тем больше, чем выше уровень электризации материала.

Иногда в качестве нейтрализатора эффективно применяется тонкий проводник, натянутый вблизи заряженной поверхности или на пути движения жидкостей и сыпучих материалов. В большинстве случаев нет особой необходимости снижать степень электризации до нуля.

Для различных веществ и материалов существует минимальная плотность зарядов, не влияющая на ход технологического процесса. Поэтому работа того или иного нейтрализатора может быть оценена по значениям начальной (до нейтрализатора) и конечной (после нейтрализатора) плотности зарядов.

На практике для конкретного типа нейтрализаторов могут быть построены зависимости начальной и конечной плотности зарядов при различных параметрах технологического процесса.

Всё большее распространение получают так называемые комбинированные нейтрализаторы – сочетающие в одном приборе радиоизотопный и индукционный нейтрализаторы. При этом эффективность нейтрализации существенно возрастает, так как большие заряды снижает индукционный, а малые – радиоизотопный нейтрализаторы.

Существенно расширилась область применения электрических и радиоизотопных нейтрализаторов, используемых для ионизации воздушного потока, который нагнетается в зону, где надо уменьшить электростатические заряды. Этот метод даёт возможность обеспечить взрывобезопасность применения даже высоковольтных нейтрализаторов.

Однако эффективность нейтрализаторов с нагнетанием ионизированного воздуха невысока из-за рекомбинации ионов в воздушном потоке. Даже резкое увеличение плотности ионов непосредственно у источника не может существенно изменить радиус действия такого нейтрализатора, так как интенсивность рекомбинации растёт с увеличением плотности.

Наиболее перспективным методом, когда необходимо создать протяжённую в одном направлении область ионизации, следует считать применение лазера.

В тех случаях, когда отвод и нейтрализация зарядов статического электричества весьма затруднены, можно применять метод предотвращения опасных разрядов без отвода или нейтрализации зарядов.

В основе этого метода лежит механизм электрического разряда, для возникновения которого необходимо, чтобы разность потенциалов между заряженным телом и заземлёнными частями оборудования не превышала уровня, определяемого электрической прочностью воздуха.

Для снижения потенциала заряженной поверхности стремятся повысить удельную электрическую ёмкость заряженной поверхности (или заряженных частиц) относительно земли. При увеличении ёмкости тела соответственно уменьшается энергия заряда с этого тела и понижается опасность воспламенения паро-газо-воздушных смесей.

Иногда данный метод используют для уменьшения опасности разрядов с человека. Для этого в рабочих зонах создаются заземлённые площадки (иногда под изоляционным покрытием пола), которые служат для увеличения ёмкости человека. Исследования показали, что таким образом можно увеличить ёмкость человека в 3–4 раза.

Иногда применяют обычные меры предотвращения возможности воспламенения – снижают концентрацию горючих веществ ниже нижнего предела взрываемости, создают атмосферу инертного газа, применяют электростатические экраны, заменяют горючие вещества негорючими.

Необходимо заметить, что внедрению какого-либо мероприятия по предотвращению электризации должно предшествовать тщательное изучение условий производства. Как правило, наиболее эффективным оказывается использование сразу нескольких из рассмотренных методов.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/17_99813_zashchita-ot-staticheskogo-elektrichestva.html

Защита от статического электричества. Возникновение и действие

5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА

Статическое электричество возникает вследствие сохранения зарядов электростатического поля на диэлектрических материалах. Оно отрицательно влияет на жизнь человека и эксплуатацию электрических устройств. Образование искр от статического электричества способствует пожарам и взрывам. Мощности энергии вполне хватит для возгорания газовоздушных смесей и пыли.

Заряд статического электричества может накапливаться на теле человека, если на нем одежда из шерсти или из химических волокон. Величина потенциала около 7 Джоулей не составляет опасности для человека, однако способна вызвать судороги и сокращения мышц. А это в свою очередь может создать условия для травмы на работе, падения с высоты и т.д.

Статическое электричество отрицательно влияет на функционирование точных приборов, радиосвязи, вызывает неисправности в работе. Работники, на которых постоянно воздействует статическое электричество, чаще болеют сердечно-сосудистыми заболеваниями и болезнями нервной системы.

Источники статического электричества

  • Действие различных излучений.
  • Резкое изменение температуры.
  • Взаимодействие тел друг с другом при движении.

Это явление оказывает негативное влияние и представляет опасность. Защита от статического электричества позволяет полностью предотвратить или значительно уменьшить его действие.

В бытовых условиях статическое поле часто возникает на шерсти животных, при снятии синтетической одежды, расчесывании волос, при ношении резиновой обуви, хождении по ковру в шерстяных носках, пользовании пластмассовыми изделиями.

Электростатическое поле не угрожает жизни человека, при разряде образуется слабый ток, который не способен слишком навредить организму человека. Он может создать лишь некоторое некомфортное состояние.

Для предотвращения такого эффекта необходимо соблюдать всего лишь несколько простых правил: в морозную и сухую погоду не гладить животных, медленнее снимать шерстяную одежду, либо обработать ее специальным составом, при расчесывании волос применять деревянную или металлическую расческу.

Накапливанию электростатической энергии способствуют:

  • Железобетонные стены здания.
  • Слишком сухой воздух.

Для электронных устройств заряд электростатического поля является злейшим врагом. Некоторые элементы электронных устройств не способны выдержать высокие напряжения, возникающие при разряде. Чувствительные элементы могут выйти из строя или ухудшить свои параметры работы.

Если объектом воздействия электрического поля станут легковоспламеняющиеся жидкости, это создаст условия для их воспламенения. Эти жидкости при перевозке в цистернах могут накопить статический заряд. Также заряд возникает и от механизма или человека, подошедшего к ним близко.

Поэтому в промышленном производстве, где имеются легковоспламеняющиеся жидкости, большое внимание уделяют устройству заземления подвижных конструкций, механизмов.

Для пошива обуви и специальной одежды на производстве также применяются специальные ткани, которые не способны накапливать электрический заряд.

Принцип действия

Разберемся, как образуется статический заряд. В нормальном состоянии физические тела обладают одинаковым числом отрицательных и положительных частиц. За счет этого баланса создается нейтральное состояние тела. При нарушении нейтрального состояния тело получает электрический заряд одного полюса.

Статикой называется состояние тела в покое, когда оно находится без движения. В веществе тела может возникать поляризация, которая выражается в передвижении зарядов между частями тела, либо от находящегося рядом предмета.

Вещества электризуются из-за разделения тел, изменения зарядов во время трения, резкого изменения температуры, облучения. Заряды электрического поля находятся на поверхности тела или удалены от поверхности на расстояние, равное межатомному расстоянию. Если тела не заземлены, то заряды концентрируются на контактной площади, а при наличии заземления заряд уходит в контур заземления.

Процессы накапливания зарядов и их стекание происходят в одно время. Тело электризуется при условии получения им большего заряда энергии, по сравнению с расходуемым зарядом. В результате становится понятно, что защита от статического электричества должна отводить накапливаемые заряды на заземляющий контур.

Величина статического электричества

Все физические вещества имеют свою характеристику на трибоэлектрической шкале, в зависимости от их способности создавать электрические заряды различных полюсов при трении. Основные такие вещества изображены на рисунке.

Чтобы иметь представление о размерах возникающих статических зарядов, рассмотрим несколько примеров:

  • Вращающийся шкив с приводным ремнем способен зарядиться до 25000 вольт.
  • Кузов автомобиля, движущегося по сухой дороге, может получить заряд до 10000 вольт.
  • Человек в шерстяных носках при хождении по сухому ковру способен накопить заряд на теле до 6000 вольт.

В результате становится понятно, что напряжение электростатического поля может достигнуть значительных размеров даже в быту. Этот заряд не причиняет человеку значительного вреда ввиду его малой мощности.

Разряд протекает через большое сопротивление и исчисляется в нескольких долях миллиампера.

Влажность воздуха также снижает электростатический заряд. Она влияет на значение потенциала тела во время прикосновений с разными материалами. Поэтому защита от статического электричества может заключаться в применении увлажнителей воздуха.

В природной среде существует статическое электричество, достигающее огромных значений. Например, при движении облаков между ними возникают большие потенциалы энергии, которые выражаются в разрядах молнии. Мощность этих разрядов вполне хватит, чтобы сжечь деревянный дом или расколоть ствол многолетнего дерева.

В бытовых условиях при разрядах электростатического поля человек чувствует мелкие пощипывания в пальцах, видны искры от трения шерстяной одежды, снижается работоспособность человека. Электростатическое поле негативно влияет на состояние человека, но явных повреждений не наносит.

Существуют измерительные приборы, способные точно измерить значение статического потенциала накопленного заряда на теле человека и на корпусе какого-либо устройства.

Защита от статического электричества

Существуют различные методы защиты от разрядов электростатического поля, как в быту, так и в промышленных условиях. Они имеют свои отличия. Рассмотрим подробнее каждые из них.

Защита в бытовых условиях

Каждый человек должен представлять опасность, которую несут статические разряды для организма. Их необходимо знать, и уметь их ограничивать. Для решения этой задачи организуются разные мероприятия по обучению людей методам защиты, в том числе телепередачи.

На этих мероприятиях людям объясняют, откуда и как появляется статическое поле, методы его измерения и приемы выполнения профилактической работы.

Например, чтобы избежать неприятных ощущений статического поля, для расчесывания волос целесообразно использовать деревянные расчески, вместо пластиковых.

Дерево имеет нейтральные характеристики, и во время трения не создает заряды электростатического поля. В магазинах можно без труда приобрести деревянную расческу любой формы и вида.

Чтобы предотвратить образование статического потенциала на кузове автомобиля при езде по сухому дорожному покрытию, применяют специальные антистатические ленты, которые фиксируются сзади автомобиля на днище кузова. В торговой сети можно без труда выбрать любой вариант такой ленты.

Если автомобиль ничем не защищен от возможного разряда накопленного заряда потенциала, то напряжение можно снимать временным заземлением кузова автомобиля путем его соединения с землей через металлическую часть. Для этого можно использовать ключ зажигания. Снимать напряжение в обязательном порядке необходимо перед тем, как заправлять автомобиль бензином.

Когда на одежде из химических волокон образуется статический заряд, то рекомендуется пользоваться «Антистатиком». Это специальный баллончик в виде аэрозоля, который продается в магазинах. Он снимает статическое электричество с одежды, тканей, с синтетических чехлов на сиденьях автомобиля, особенно в зимнее время, когда воздух сухой. Но, чтобы не использовать различные баллончики и химию, рекомендуется носить одежду из натуральных материалов: хлопка и льна

Если на обуви прорезиненная подошва, то это создает условия для накопления потенциала напряжения. Чтобы этого не произошло, достаточно в обувь положить специальные антистатические стельки, которые сделаны из натуральных материалов. В результате негативное влияние на человека уменьшится.

Слишком сухой воздух зимой в городских квартирах способствует накапливанию электростатического заряда. Для этого существуют специальные устройства – увлажнители воздуха.

Если такого устройства нет, то вполне подойдет большая влажная салфетка, которую необходимо положить на батарею. В результате процесс накопления заряда уменьшится, обстановка в квартире улучшится. Также рекомендуется регулярно производить влажную уборку.

Это позволит вовремя удалять пыль и наэлектризованные участки. Такой способ является лучшим.

Электрические устройства в быту при эксплуатации также накапливают статический заряд на корпусе. Для снижения действия статического заряда выполняют систему уравнивания потенциалов.

Она подключается к заземляющему контуру всего дома. Акриловая ванна подвержена накоплению на ней статического заряда, и ее необходимо защищать системой уравнивания потенциалов.

Даже чугунная ванна с акриловым вкладышем также подвержена этому негативному явлению.

В промышленном производстве применяют несколько способов сохранения функциональности оборудования:

  • Увеличение стойкости устройств и оборудования к воздействию электростатического разряда.
  • Блокировка проникновения заряда на рабочее место.
  • Недопущение возникновения электростатических зарядов.

Два последних способа дают возможность осуществлять защиту многих устройств, а первый способ применяется только для отдельных видов оборудования.

Высокую защиту от разрядов статического поля и сохранения функциональности устройства обеспечивает клетка Фарадея. Это металлическая клетка в виде сетки с мелкой ячейкой. Клетка ограждает оборудование со всех сторон.

Она подключается к заземляющему контуру. Внутрь клетки не проходят электрические поля, в то же время магнитному статическому полю, клетка Фарадея не мешает.

По такому же принципу защищают кабели, оснащая их металлическим экраном.

Защита от статического электричества делится по методам выполнения:

  • Конструкционно-технологические.
  • Химические.
  • Физико-механические.

Последние два метода дают возможность снизить образование зарядов и повысить скорость их ухода в землю. Первый метод выполняет защиту устройств от зарядов, но не отводит их на заземление.

Оптимизировать снижение электростатического заряда можно следующим образом:

  • Увеличением токопроводимости материалов.
  • Созданием коронирования.

Такие задачи решают с помощью:

  • Выбора материалов с хорошей объемной проводимостью.
  • Увеличением рабочих поверхностей.
  • Ионизацией воздушного пространства.

Для реализации этих задач создают магистрали для протекания на землю статических зарядов, минуя рабочие компоненты устройств. Если материалы имеют высокое сопротивление, то применяют другие способы.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/zashchita-ot-staticheskogo-elektrichestva/

Book for ucheba
Добавить комментарий