7.4. Экологически приемлемый риск

7.4. Оценка экологического риска: Оценки риска. Судя по данным, приведенным выше в этой главе, вся наша

7.4. Экологически приемлемый риск

Оценки риска. Судя по данным, приведенным выше в этой главе, вся наша планета стала зоной экологического риска. Но он не всегда и не для всех очевиден, так как маскируется многочисленными другими источниками риска для здоровья и жизни людей.

Известно множество ситуаций различного уровня, когда стремление к удовлетворению какой либо общественной или индивидуальной потребности сильно влияет на приемлемость сопряженного с этим риска.

Оценка экологического риска – это научное исследование, в котором факты и научный прогноз используются для оценки потенциально вредного воздействия на окружающую среду различных загрязняющих веществ и других агентов.

Экологический риск не единственный и во многих случаях не главный вид риска для жизни, здоровья и благосостояния людей, поэтому он должен быть соизмерен с другими видами социального риска. Существует большая информация об уровнях риска преждевременной смерти от различных причин, основанная на разных массивах статистических данных. В табл. 7.

3 приведены некоторые из этих данных. Бесспорное лидерство здесь принадлежит смертности от болезней системы кровообращения. В последние годы на второе место переместилась смертность от несчастных случаев, отравлений и травм. Максимальное значение риска rр = 0,01 считается пределом для критических контингентов населения, включая младенческую и детскую смертность.

Уровни риска экопатологии, т.е. риска, связанного с нарушением здоровья из-за техногенных изменений качества среды, по-видимому, должны быть намного ниже. Однако единая точка зрения на значение этих пределов отсутствует, и они остаются предметом чрезвычайно ответственного выбора.

Чаще всего за нормативный уровень принимается также 1% вероятность экопатологии: Rр ? 0,01, хотя есть основания для пересмотра этого норматива, так как он сильно отличается от реального уровня заболеваний, вызванных загрязнением окружающей среды. Следует понимать, что риск заболевания Rр и риск смерти от этого заболевания RL – совершенно разные показатели.

Статистическая информация об уровнях риска, обусловленных хроническим загрязнением окружающей среды, чрезвычайно разнородна и противоречива. В экологии и экопатологии применяются так называемые стресс-индексы для различных неблагоприятных воздействий факторов среды, которые по своему функциональному смыслу пропорциональны значениям экологического риска (табл. 7.

4). Пестициды, тяжелые металлы и отходы АЭС занимают в этом списке первые места. Обычно при оценке риска его характеризуют двумя величинами – вероятностью события W и последствиями X, которые в выражении математического ожидания выступают как сомножители: R= WX. По отношению к источникам оценка риска предусматривает разграничение нормального режима работы и аварийных ситуаций: R = Rн + Rав = Wн*Xн + Wав + Хав.          (7.7)

Объективные и субъективные оценки риска по отношению ко многим неблагоприятным воздействиям заметно расходятся.

Так, если в ранжированном перечне объективных причин смерти в США (1986 г.) первые места занимали курение (RL = 6,2*10-4) и алкоголь (RL = 4,1*10-4), то в разных кругах общественного мнения им отводились места от 3-го до 7-го. Электротравмы, занимая пятое место (RL = 5,8*10-5), ставились людьми на 18-19-е места. Зато атомная энергия, находясь среди объективных причин смерти на 20-м месте (RL = 4,1*10-7), в представлении большинства опрошенных заняла первое место (год Чернобыля!). Таблица 7.3

Годовой индивидуальный риск смерти, обусловленной различными причинами (Россия, 1996г.)

Причины смертиRL
Общий риск (все причины)14,3*10-3
Болезни системы кровообращения7,6*10-3
Несчастные случаи, отравления, травмы2,1*10-3
В том числе
транспортные травмы2,3*10-4
отравления алкоголем2,3*10-4
утопления1,1*10-4
самоубийства3,9*10-4
убийства2,7*10-4
производственные травмы1,5*10-4
Новообразования2,0*10-3
Болезни органов дыхания6,9*10-4
Болезни органов пищеварения4,2*10-4
/>Инфекционные и паразитарные болезни2,1*10-4
Пожары1,1*10-4
ЧС природного и техногенного характера8,7*10-6
Облучение персонала АЭС после радиационной аварии*10-2
Облучение окружающего населения после радиационной аварии на АЭС*10-4
Неаварийные искусственные источники радиации*5*10-5

* По данным, относящимся к населению СССР, 1986-1988 гг. Подобные расхождения нельзя приписывать только невежеству людей. Специалистам приходится часто сталкиваться со стойкими общественными предубеждениями, которые способны оказывать серьезное влияние на экономическую политику и систему принятия решений. Это явление включает и феномен экофобии – навязчивой боязни поражения опасными факторами окружающей среды. Чаще всего она проявляется в виде радиофобии и хемофобии. После Хиросимы и Чернобыля в сознании многих людей вероятность болезни и смерти от радиации стала «весить» несравненно больше, чем смерть от промышленных и транспортных аварий, от пьянства и драк, от ударов электрическим током, от «кухонных» пожаров, хотя любая из этих причин убивает людей в сотни и тысячи раз больше, чем радиация. Люди невольно преувеличивают опасность факторов, которые не поддаются индивидуальному психологическому контролю. Таблица 7.4

Стресс-индексы для/наличных групп загрязнителей окружающей среды

Наименование загрязнителейСресс-индексы
Пестициды140
Тяжелые металлы135
Транспортируемые отходы АЭС120
Твердые токсичные отходы промышленности120
Взвешенные материалы в стоках металлургии90
Неочищенные смешанные сточные воды85
Диоксид серы в воздухе72
Разливы нефти на почве72
Химические удобрения63
Органические бытовые отходы48
Окислы азота в воздухе42
Смешанный городской мусор40
Фотохимические оксиданты18
Летучие углеводороды в воздухе18
Городской шум15
Окись углерода в воздухе12

От экофобии нельзя отмахиваться, как это до сих пор делают представители заинтересованных ведомств, считая их «психозами мнительных невежд». Радиофобия и хемофобия стали закономерными проявлениями экологического стресса современного общества. Даже при очень малых дозах радиации, аллергенного раздражения или вообще при чисто кажущемся поражении они могут приводить у некоторых людей к вполне определенным психогенным клиническим эффектам и стойким психосоматическим заболеваниям, за которые общество должно нести такую же ответственность, как и за прямое радиационное или химическое поражение людей. Сопоставление рисков. Приоритеты безопасности людей существенно влияют на приоритеты государственной эколого-экономической политики, особенно в области энергетики. Согласно «среднему варианту» прогноза МИРЭК, с 2000 г. по 2060 г. вклад «экологически чистых» отраслей энергетики (гидроэнергия + возобновляемые источники энергии) при абсолютном увеличении в 4 раза должен возрасти от 18 до 36% всей коммерческой энергетики. В несколько меньшей пропорции предполагается рост ядерной энергетики – с 9 до 14%. По другим вариантам, он больше и мог бы быть еще больше при выполнении ряда условий. Чуть ли не главное из них – снятие предубеждений об экологической опасности эксплуатации и демонтажа АЭС, регенерации, утилизации и захоронения ОЯТ. В качестве примера трудностей, с которыми при этом приходится сталкиваться, рассмотрим в общих чертах коллизии, связанные с оценкой безопасности АЭС. В каждом из крупных энергетических реакторов АЭС заключено от 100J до 200 т обогащенного урана с общей активностью порядка ЮМО9 Ки.] Энергетика реактора тем эффективнее, чем ближе параметры физических процессов в нем к грани ядерного взрыва. Это огромный потенциал опасности, так как даже одна тысячная доля кюри может вызвать у человека серьезное лучевое поражение. Очевидно, что требования безопасности должны сводить к нулю этот потенциал, т.е. обеспечивать идеальную изоляцию ядерного топлива, экранировать его внешние излучения, с высочайшей надежностью поддерживать режим эксплуатации и предельно минимизировать эксплуатационные утечки наведенной радиоактивности. Современная штатная технология близка к этому уровню. За год работы в зависимости от типа реактора образуется 200-400 м3 жидких малоактивных отходов и 30-70 т ОЯТ, которые легко изолируются. Регламентные утечки наведенной радиации с водой и паром настолько малы (доли грамма в год в пересчете на активные вещества), что практически не влияют на радиационный фон в зоне АЭС. При штатной работе удельная природоемкость АЭС (изъятие местных природных ресурсов и загрязнение среды на 1 кВт/ч вырабатываемой электроэнергии) намного меньше, чем у любой ТЭС и даже меньше, чем у ГЭС на равнинных реках. До Чернобыля на счету ядерной энергетики мира было почти 3500 реакторолет без единого смертного случая в результате облучения. Редкие поражения людей при авариях имели нерадиационные причины. Никакая другая отрасль не имела такого низкого уровня травматизма. Для престижа ядерной энергетики до серьезных аварий реакторов (Тримайл-Айленд, США, 1979; Чернобыль, 1986) эти свидетельства были не нужны: безопасность и перспективность АЭС считались бесспорными. Аварии, особенно чернобыльская, все изменили. В оценках риска реакторных радиационных катастроф вместо ничтожных величин появились значения W »10~ -10″ год”'. Ядерной энергетике пришлось защищаться. Самым распространенным доводом стало количественное сопоставление экологических угроз со стороны атомных и угольных электростанций. В одной из таких работ сравнивается число поражений, связанных с полными топливными циклами – угольным и атомным (Шевелев, 1989, табл. 7.5). Общий итог сравнения впечатляет. Автор пишет: «В целом по стране от угольных электростанций (при мощности 75 ГВт) гибнет, заболев раком, более 20000 человек в год. Можно сказать, что ежегодно угольная энергетика порождает чернобыльскую аварию. Но действительный эффект чернобыльской аварии в этом сравнении не учтен. А он еще долго будет продолжать действовать, даже если подобная катастрофа больше никогда не повторится. Таблица 7.5

Число преждевременных смертей, связанных с годом работы блока мощностью 1ГВт «угольном и атомном топливном циклах

Воздействия и эффектыТопливный цикл
угольныйатомный
Несчастные случаи5,60,25
Заболевания нерадиационной этиологии6,90,15
обслуживающего персонала360,00
окружающего населения0,110,30
Облучение обслуживающего персонала0,060,07
Облучение окружающего населения3730,8
Всего

Управление экологическим риском является процедурой принятия решений, в которой учитывается оценка экологического риска, а также технологические и экономические возможности его предупреждения. Обмен информацией о риске также включается в этот процесс. Схема процесса управления риском представлена на рис. 7.2. Для анализа риска, установления его допустимых пределов в связи с требованиями безопасности и принятия управляющих решений необходимы: наличие информационной системы, позволяющей оперативно контролировать существующие источники опасности и состояние объектов возможного поражения, в частности, статистический материал по экологической эпидемиологии; сведения о предполагаемых направлениях хозяйственной деятельности, проектах и технических решениях, которые могут влиять на уровень экологической безопасности, а также программы для вероятностной оценки связанного с ними риска; экспертиза безопасности и сопоставление альтернативных проектов и технологий, являющихся источниками риска; разработка технико-экономической стратегии увеличения безопасности и определение оптимальной структуры затрат для управления величиной риска и ее снижения до приемлемого уровня с экономической и экологической точек зрения; составление рискологических прогнозов и аналитическое определение уровня риска, при котором прекращается рост числа экологических поражений; формирование организационных структур, экспертных систем и нормативных документов, предназначенных для выполнения указанных функций и процедуры принятия решений; воздействие на общественное мнение и пропаганда научных данных об уровнях экологического риска с целью ориентации на объективные, а не эмоциональные или популистские оценки риска. Рис. 7.2. Схема процедур анализа риска и управления риском В соответствии с принципом уменьшающихся рисков важным средством управления является процедура замещения рисков. Согласно ей риск, вносимый новой техникой, социально приемлем, если ее использование дает меньший вклад в суммарный риск, которому подвергаются люди, по сравнению с использованием другой, альтернативной техники, решающей ту же самую хозяйственную задачу. Эта концепция тесно связана с проблемой экологической адекватности качества производства. Экологически приемлемый риск. Многие стороны теории экологического риска и ее практических приложений еще далеки от завершенности. Проблема очень сложна. Она включает медико-биологические, собственно экологические, социально-психологические, экономические, правовые и технические аспекты. При использовании инструментария каждой из этих областей знания оценки одного и того же риска скорее всего окажутся различными. По существу, в этом случае повторяется почти то же самое, что и при различных субъективных оценках опасности. Поэтому есть основания считать, что из всех возможных подходов к объективному определению приемлемого риска техногенных воздействий на человеческое общество в целом или на население какого-либо региона следует выбирать экологический подход, который в качестве объекта опасности рассматривает не только человека, а весь комплекс окружающей его среды, учитывая в историческом плане все ее отклонения от естественного состояния. Остальные подходы, особенно социальный, экономический, технический не лишены известного произвола, связанного с внеэкологическими потребностями и интересами общества. Они в той или иной степени компромиссны. И еще одно замечание. Концепция риска переводит социально-психологические проблемы общества, часто весьма деликатные, в плоскость количественных оценок. Для сравнения риска и выгод предлагается ввести экономический эквивалент человеческой жизни. Это непривычно. Жизнь человека бесценна. Но существует вполне четкое понятие стоимости человеческой жизни, определяемой затратами на рождение, воспитание, образование, получаемым человеком доходом и т.п. Эту стоимость приходится учитывать при страховании и при оценке экономического ущерба, наносимого гибелью людей во время катастроф. Например, стоимость жизни одного жителя США при авиакатастрофах оценивается в 600-800 тысяч долларов. Поэтому когда ставится вопрос о приемлемом риске от загрязнения среды или от реакторов АЭС, приходится учитывать не только потенциалы угроз, но и «стоимости жизни», определяемые альтернативами экономического развития общества и деградации окружающей среды.

  1. Экологическое регулирование и экологическое право. Социальные проблемы природопользования и концепция сбалансированного риска
  2. Оценка риска самоубийства.
  3. Оценка индивидуального риска смерти от ССЗ. Таблица SCORE
  4. Факторы, влияющие на прогноз; оценка общего (суммарного) сердечнососудистого риска
  5. 1. Понятие и место оценки воздействия на окружающую среду в механизме экологического права Под оценкой воздействия на окружающую среду (ОВОС) понимается деятельность, направленная на определение характера и степени потенциального воздействия намечаемой деятельности на окружающую среду, ожидаемых экологических и связанных с ними социальных и экономических последствий в процессе и после реализации такого проекта и выработку мер по обеспечению рационального использования природных ресурсов и охра
  6. Перцепция риска и проблемы «языка риска»
  7. 1. Понятие и цели экологического аудита Под экологическим аудитом понимается проверка и оценка состояния деятельности юридических лиц и граждан-предпринимателей по обеспечению рационального природопользования и охраны окружающей среды от вредных воздействий, включая состояние очистного и технологического оборудования, их соответствие требованиям законодательства РФ, проводимые для выявления прошлых и существующих экологически значимых проблем, подготовки рекомендаций по совершенствованию такой
  8. 10.3.2. Экономическая оценка экологических издержек и ущерба от загрязнения
  9. 3.2.4. Некоторые выводы из оценки экологической обстановкив Республике Беларусь (1999г)
  10. XI. ПРАВОВЫЕ ОСНОВЫ ОЦЕНКИ ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ И ЭКОЛОГИЧЕСКОЙ ЭКСПЕРТИЗЫ
  11.             Приложение 3 Некоторые определения и методы оценки качества окружающей среды, используемые в экологическом мониторинге
  12. ЭКОЛОГИЧЕСКИЙ ПОДХОД К ОЦЕНКЕ КАЧЕСТВА ВОДЫ Проблема дефицита воды
  13. 1. Понятие и виды экологических правоотношений Экологическое правоотношение — это реально существующее общественное отношение, урегулированное нормами экологического права, участники которого являются носителями субъективных прав и обязанностей.
  14. Составляющие риска
  15. 6.2. Общество риска

Источник: https://texts.news/obschaya-ekologiya/otsenka-ekologicheskogo-riska-67376.html

Экологически приемлемый риск. Оценка экологического риска

7.4. Экологически приемлемый риск

Экологический риск– это оценка на всех уровнях вероятности появления негативных изменений в окружающей среде, вызванных, антропогенным или иным воздействием. Под экологическим риском

понимают также вероятностную меру опасности причинения вреда природной среде в виде возможных потерь за определенное время.

Вред природной среде при различных антропогенных и стихийных воздействиях неизбежен, однако он должен быть сведен до минимума и быть экономически оправданным.

Любые хозяйственные или иные решения должны приниматься с таким расчетом , чтобы не превышать пределы вредного воздействия на природную среду. Хотя пределы эти установить очень сложно.

Поэтому расчеты экологического риска должны быть вероятностными и многовариантными , с выделением риска для здоровья человека и природной

среды.

Оценка экологического риска-это процесс определения вероятности развития неблагоприятных эффектов со стороны биогеоценозов, в результате изменения среды , происходящих под влиянием хозяйственной деятельности человека. В большинстве случаев оценка экологического риска носит качественный или

описательный характер. План проведения оценки экологического риска включает следующие этапы:

1. Формулировка проблемы

2. Анализ экологической ситуации

3. Обработка данных, формирование выводов . Различают три главные составляющие экологического риска:

-оценку состояния здоровья человека и возможного числа жертв

i

'

-оценку состояния биоты по биологическим показателям

-оценку воздействия загрязняющих веществ на человека и окружающую

среду.

Помимо оценки риска , необходимо принимать целый комплекс решений (политических, социальных, технических и экономических), направленных' на снижение величины риска до приемлемого уровня. Превышение пределов допустимого экологического риска должны пресекаться по закону.

Фактор экологического, риска существует на любых предприятиях , независимо от мест их расположения. Однако существуют регионы, где , в сравнении с благополучными районами , во много раз превышены вероятность проявления негативных изменений в экосистеме и как следствие, повышаются величины риска потери здоровья и жизни для человека. Эти

регионы получили название зон повышенного экологического риска.

В пределах регионов повышенного экологического риска выделяют зоны:

1) хронического загрязнения окружающей среды

2) повышенной , экологической опасности. 3) чрезвычайной экологической ситуаций и 4)экологического бедствия.

Зонами экологического бедствия называются территории, на которых произошли необратимые изменения окружающей среды, повлекшие за собой существенное ухудшение здоровья населения , разрушение естественных iэкосистем, деградацию флоры и фауны.

«Основы медицинской экологии. Человек как экологический фактор. Особенности возникновения и профилактики экологически зависимых

заболеваний»

1. Известно, что примерно 30% городского населения подвергаются существенному шумовому воздействию (уровень шума 55-70 дБ)

1. Какой предельно допустимый уровень шума в городах (днем и ночью)?

2. Перечислите основные источники шума?

3. Назовите негативные последствия для организма человека, которые может вызвать повышение шума в городах?

4. Какие меры необходимо предпринимать для защиты жителей от шумового воздействия?

2. В летнее время года в крупных мегаполисах, особенно расположенных в низинах, часто возникает так называемый «лос-анжелесский» или фотохимический тип смога.

1. Отметьте причины его возникновения?

2. Укажите его основные компоненты.

3. Каково их патогенное действие на организм человека?

3. Жители одного из крупных промышленных городов почувствовали недомогание, слабость, сонливость. У некоторых наблюдалась одышка, учащенное сердцебиение. В результате острой дыхательной и сердечной недостаточности 4 тыс. человек погибли, 10 тыс. человек заболели. Причиной таких патологических состояний стал так называемый «лондонский» смог.

1. Назовите причины его возникновения.

2. В какое время года он возникает?

3. Какие вещества наиболее часто входят в его состав?

4. Какое действие оказывает каждый из этих компонентов на организм человека?

4. В связи с бурным развитиемтелевидения, радио, сотовой связи на организм человека мощное воздействие оказывает электромагнитное

излучение.

1. Какое негативное влияние может оказывать ЭМИ на организм человека?

2. Укажите диапазон, в котором ЭМИ может изменять проницаемость клеточной мембраны?

3. Какие проявления со стороны сердечно-сосудистой, нервной системы и органов зрения характерны для длительного воздействия ЭМИ?

4. Кто наиболее подвержен влиянию этих излучений?

5. Одним из постоянных компонентов дыма ТЭЦ, является пятиокись ванадия (V2O5). По характеру поражения органов и тканей соединения

ванадия могут быть отнесены к ядам общетоксичного действия.

1. Назовите основные пути поступления этого вещества в организм человека.

2. Отметьте, в каких районах г. Самары его содержание особенно повышено.

3. Какое патогенное действие на организм человека?

6. Одним из основных источников загрязненияатмосферы в крупных
мегаполисах является автотранспорт.

1. Перечислите основные компоненты выхлопных газов автомобилей.

2. Какое патогенное действие оказывает каждый из этих компонентов на организм человека?

7. Одним из наиболее загрязненных районов г. Самары является
Кировский район.

1. Назовите основные источники загрязнения, сосредоточенные в этом районе.

2. Перечислите основные для этого района экотоксиканты.

3. Каков характер влияния на организм приоритетных ксенобиотиков для данного района?

8. В процессе сжигания топлива на ТЗД в атмосферу выделяется дым, содержащий продукты неполного сгорания (оксиды углерода, серы, азота,

углеводороды и т.д.) и полного сгорания (диоксид углерода и пары воды).

1. К каким последствиям может привести увеличение содержания этих веществ в атмосфере?

2. Укажите, каким патогенным действием обладает оксид углерода?

3. Возможно ли, что увеличение восприимчивости организма к вирусным и бактериальным инфекциям связана с повышением в атмосфере оксида углерода?

9. Бенз(а)перен относится к веществам обладающим мутагенным и канцерогенным действием. Среди загрязнителей воздуха его доля составляет 50%. Основным источником его поступления в атмосферу –

выхлопные газы автомобилей.

1. Укажите другие источники поступления бенз(а)перена в атмосферу?

2. Какие пути поступления бен(а) перена в организм человека?

3. Укажите механизм патогенного действия этого вещества ?

10. Известно, что одной из причин развития йоддефицитных состояний
человека является недостаток йода в почве, воде и продуктах питания.

1.Является ли Самарская область йоддефицитной провинцинцией?

2. Какие изменения в организме человека могут быть связаны с недостатком йода?

3. Перечислите продукты питания содержащие йод в большом количестве.

4. Назовите основные меры профилактики йоддефицитных заболеваний у населения.

Источник: https://studopedia.org/6-77622.html

7.4. оценка экологического риска • Экология. Природа – Человек – Техника, Т.А. АКИМОВА, 2001

7.4. Экологически приемлемый риск

Оценки риска. Судя по данным, приведенным выше в этой главе, вся наша планета стала зоной экологического риска.

Но он не всегда и не для всех очевиден, так как маскируется многочисленными другими источниками риска для здоровья и жизни людей.

Известно множество ситуаций различного уровня, когда стремление к удовлетворению какой либо общественной или индивидуальной потребности сильно влияет на приемлемость сопряженного с этим риска.

Оценка экологического риска это научное исследование, в котором факты и научный прогноз используются для оценки потенциально вредного воздействия на окружающую среду различных загрязняющих веществ и других агентов.

Экологический риск не единственный и во многих случаях не главный вид риска для жизни, здоровья и благосостояния людей, поэтому он должен быть соизмерен с другими видами социального риска.

Существует большая информация об уровнях риска преждевременной смерти от различных причин, основанная на разных массивах статистических данных. В табл. 7.3 приведены некоторые из этих данных. Бесспорное лидерство здесь принадлежит смертности от болезней системы кровообращения.

В последние годы на второе место переместилась смертность от несчастных случаев, отравлений и травм. Максимальное значение риска rр = 0,01 считается пределом для критических контингентов населения, включая младенческую и детскую смертность.

Уровни риска экопатологии, т.е. риска, связанного с нарушением здоровья из-за техногенных изменений качества среды, по-видимому, должны быть намного ниже. Однако единая точка зрения на значение этих пределов отсутствует, и они остаются предметом чрезвычайно ответственного выбора.

Чаще всего за нормативный уровень принимается также 1\% вероятность экопатологии: Rр £ 0,01, хотя есть основания для пересмотра этого норматива, так как он сильно отличается от реального уровня заболеваний, вызванных загрязнением окружающей среды.

Следует понимать, что риск заболевания Rр и риск смерти от этого заболевания RL совершенно разные показатели.

Статистическая информация об уровнях риска, обусловленных хроническим загрязнением окружающей среды, чрезвычайно разнородна и противоречива.

В экологии и экопатологии применяются так называемые стресс-индексы для различных неблагоприятных воздействий факторов среды, которые по своему функциональному смыслу пропорциональны значениям экологического риска (табл. 7.

4). Пестициды, тяжелые металлы и отходы АЭС занимают в этом списке первые места.

Обычно при оценке риска его характеризуют двумя величинами вероятностью события W и последствиями X, которые в выражении математического ожидания выступают как сомножители:

R= WX.

По отношению к источникам оценка риска предусматривает разграничение нормального режима работы и аварийных ситуаций:

R = Rн + Rав = Wн*Xн + Wав + Хав. (7.7)

Объективные и субъективные оценки риска по отношению ко многим неблагоприятным воздействиям заметно расходятся. Так, если в ранжированном перечне объективных причин смерти в США (1986 г.

) первые места занимали курение (RL = 6,2*10-4) и алкоголь (RL = 4,1*10-4), то в разных кругах общественного мнения им отводились места от 3-го до 7-го. Электротравмы, занимая пятое место (RL = 5,8*10-5), ставились людьми на 18-19-е места.

Зато атомная энергия, находясь среди объективных причин смерти на 20-м месте (RL = 4,1*10-7), в представлении большинства опрошенных заняла первое место (год Чернобыля!).

Таблица 7.3

Годовой индивидуальный риск смерти, обусловленной различными причинами (Россия, 1996г.)

Причины смертиRL
Общий риск (все причины)14,3*10-3
Болезни системы кровообращения7,6*10-3
Несчастные случаи, отравления, травмы2,1*10-3
В том числе
транспортные травмы2,3*10-4
отравления алкоголем2,3*10-4
утопления1,1*10-4
самоубийства3,9*10-4
убийства2,7*10-4
производственные травмы1,5*10-4
Новообразования2,0*10-3
Болезни органов дыхания6,9*10-4
Болезни органов пищеварения4,2*10-4
Инфекционные и паразитарные болезни2,1*10-4
Пожары1,1*10-4
ЧС природного и техногенного характера8,7*10-6
Облучение персонала АЭС после радиационной аварии*10-2
Облучение окружающего населения после радиационной аварии на АЭС*10-4
Неаварийные искусственные источники радиации*5*10-5

* По данным, относящимся к населению СССР, 1986-1988 гг.

Подобные расхождения нельзя приписывать только невежеству людей. Специалистам приходится часто сталкиваться со стойкими общественными предубеждениями, которые способны оказывать серьезное влияние на экономическую политику и систему принятия решений.

Это явление включает и феномен экофобии навязчивой боязни поражения опасными факторами окружающей среды. Чаще всего она проявляется в виде радиофобии и хемофобии.

После Хиросимы и Чернобыля в сознании многих людей вероятность болезни и смерти от радиации стала «весить» несравненно больше, чем смерть от промышленных и транспортных аварий, от пьянства и драк, от ударов электрическим током, от «кухонных» пожаров, хотя любая из этих причин убивает людей в сотни и тысячи раз больше, чем радиация. Люди невольно преувеличивают опасность факторов, которые не поддаются индивидуальному психологическому контролю.

Таблица 7.4

Стресс-индексы для/наличных групп загрязнителей окружающей среды

Наименование загрязнителейСресс-индексы
Пестициды140
Тяжелые металлы135
Транспортируемые отходы АЭС120
Твердые токсичные отходы промышленности120
Взвешенные материалы в стоках металлургии90
Неочищенные смешанные сточные воды85
Диоксид серы в воздухе72
Разливы нефти на почве72
Химические удобрения63
Органические бытовые отходы48
Окислы азота в воздухе42
Смешанный городской мусор40
Фотохимические оксиданты18
Летучие углеводороды в воздухе18
Городской шум15
Окись углерода в воздухе12

От экофобии нельзя отмахиваться, как это до сих пор делают представители заинтересованных ведомств, считая их «психозами мнительных невежд». Радиофобия и хемофобия стали закономерными проявлениями экологического стресса современного общества.

Даже при очень малых дозах радиации, аллергенного раздражения или вообще при чисто кажущемся поражении они могут приводить у некоторых людей к вполне определенным психогенным клиническим эффектам и стойким психосоматическим заболеваниям, за которые общество должно нести такую же ответственность, как и за прямое радиационное или химическое поражение людей.

Сопоставление рисков. Приоритеты безопасности людей существенно влияют на приоритеты государственной эколого-экономической политики, особенно в области энергетики. Согласно «среднему варианту» прогноза МИРЭК, с 2000 г. по 2060 г.

вклад «экологически чистых» отраслей энергетики (гидроэнергия + возобновляемые источники энергии) при абсолютном увеличении в 4 раза должен возрасти от 18 до 36\% всей коммерческой энергетики. В несколько меньшей пропорции предполагается рост ядерной энергетики с 9 до 14\%.

По другим вариантам, он больше и мог бы быть еще больше при выполнении ряда условий. Чуть ли не главное из них снятие предубеждений об экологической опасности эксплуатации и демонтажа АЭС, регенерации, утилизации и захоронения ОЯТ.

В качестве примера трудностей, с которыми при этом приходится сталкиваться, рассмотрим в общих чертах коллизии, связанные с оценкой безопасности АЭС.

В каждом из крупных энергетических реакторов АЭС заключено от 100J до 200 т обогащенного урана с общей активностью порядка ЮМО9 Ки.] Энергетика реактора тем эффективнее, чем ближе параметры физических процессов в нем к грани ядерного взрыва.

Это огромный потенциал опасности, так как даже одна тысячная доля кюри может вызвать у человека серьезное лучевое поражение. Очевидно, что требования безопасности должны сводить к нулю этот потенциал, т.е.

обеспечивать идеальную изоляцию ядерного топлива, экранировать его внешние излучения, с высочайшей надежностью поддерживать режим эксплуатации и предельно минимизировать эксплуатационные утечки наведенной радиоактивности.

Современная штатная технология близка к этому уровню. За год работы в зависимости от типа реактора образуется 200-400 м3 жидких малоактивных отходов и 30-70 т ОЯТ, которые легко изолируются.

Регламентные утечки наведенной радиации с водой и паром настолько малы (доли грамма в год в пересчете на активные вещества), что практически не влияют на радиационный фон в зоне АЭС.

При штатной работе удельная природоемкость АЭС (изъятие местных природных ресурсов и загрязнение среды на 1 кВт/ч вырабатываемой электроэнергии) намного меньше, чем у любой ТЭС и даже меньше, чем у ГЭС на равнинных реках.

До Чернобыля на счету ядерной энергетики мира было почти 3500 реакторолет без единого смертного случая в результате облучения. Редкие поражения людей при авариях имели нерадиационные причины. Никакая другая отрасль не имела такого низкого уровня травматизма.

Для престижа ядерной энергетики до серьезных аварий реакторов (Тримайл-Айленд, США, 1979; Чернобыль, 1986) эти свидетельства были не нужны: безопасность и перспективность АЭС считались бесспорными. Аварии, особенно чернобыльская, все изменили.

В оценках риска реакторных радиационных катастроф вместо ничтожных величин появились значения W »10~ -10″ год”'. Ядерной энергетике пришлось защищаться. Самым распространенным доводом стало количественное сопоставление экологических угроз со стороны атомных и угольных электростанций.

В одной из таких работ сравнивается число поражений, связанных с полными топливными циклами угольным и атомным (Шевелев, 1989, табл. 7.5).

Общий итог сравнения впечатляет. Автор пишет: «В целом по стране от угольных электростанций (при мощности 75 ГВт) гибнет, заболев раком, более 20000 человек в год.

Можно сказать, что ежегодно угольная энергетика порождает чернобыльскую аварию. Но действительный эффект чернобыльской аварии в этом сравнении не учтен.

А он еще долго будет продолжать действовать, даже если подобная катастрофа больше никогда не повторится.

Таблица 7.5

Число преждевременных смертей, связанных с годом работы блока мощностью 1ГВт «угольном и атомном топливном циклах

Воздействия и эффектыТопливный цикл
угольныйатомный
Несчастные случаи5,60,25
Заболевания нерадиационной этиологии6,90,15
обслуживающего персонала360,00
окружающего населения0,110,30
Облучение обслуживающего персонала0,060,07
Облучение окружающего населения3730,8
Всего

Управление экологическим риском является процедурой принятия решений, в которой учитывается оценка экологического риска, а также технологические и экономические возможности его предупреждения. Обмен информацией о риске также включается в этот процесс. Схема процесса управления риском представлена на рис. 7.2.

Для анализа риска, установления его допустимых пределов в связи с требованиями безопасности и принятия управляющих решений необходимы:

наличие информационной системы, позволяющей оперативно контролировать существующие источники опасности и состояние объектов возможного поражения, в частности, статистический материал по экологической эпидемиологии;

сведения о предполагаемых направлениях хозяйственной деятельности, проектах и технических решениях, которые могут влиять на уровень экологической безопасности, а также программы для вероятностной оценки связанного с ними риска;

экспертиза безопасности и сопоставление альтернативных проектов и технологий, являющихся источниками риска;

разработка технико-экономической стратегии увеличения безопасности и определение оптимальной структуры затрат для управления величиной риска и ее снижения до приемлемого уровня с экономической и экологической точек зрения;

составление рискологических прогнозов и аналитическое определение уровня риска, при котором прекращается рост числа экологических поражений;

формирование организационных структур, экспертных систем и нормативных документов, предназначенных для выполнения указанных функций и процедуры принятия решений;

воздействие на общественное мнение и пропаганда научных данных об уровнях экологического риска с целью ориентации на объективные, а не эмоциональные или популистские оценки риска.

Рис. 7.2. Схема процедур анализа риска и управления риском

В соответствии с принципом уменьшающихся рисков важным средством управления является процедура замещения рисков.

Согласно ей риск, вносимый новой техникой, социально приемлем, если ее использование дает меньший вклад в суммарный риск, которому подвергаются люди, по сравнению с использованием другой, альтернативной техники, решающей ту же самую хозяйственную задачу. Эта концепция тесно связана с проблемой экологической адекватности качества производства.

Экологически приемлемый риск. Многие стороны теории экологического риска и ее практических приложений еще далеки от завершенности. Проблема очень сложна.

Она включает медико-биологические, собственно экологические, социально-психологические, экономические, правовые и технические аспекты. При использовании инструментария каждой из этих областей знания оценки одного и того же риска скорее всего окажутся различными.

По существу, в этом случае повторяется почти то же самое, что и при различных субъективных оценках опасности.

Поэтому есть основания считать, что из всех возможных подходов к объективному определению приемлемого риска техногенных воздействий на человеческое общество в целом или на население какого-либо региона следует выбирать экологический подход, который в качестве объекта опасности рассматривает не только человека, а весь комплекс окружающей его среды, учитывая в историческом плане все ее отклонения от естественного состояния. Остальные подходы, особенно социальный, экономический, технический не лишены известного произвола, связанного с внеэкологическими потребностями и интересами общества. Они в той или иной степени компромиссны.

И еще одно замечание. Концепция риска переводит социально-психологические проблемы общества, часто весьма деликатные, в плоскость количественных оценок. Для сравнения риска и выгод предлагается ввести экономический эквивалент человеческой жизни. Это непривычно. Жизнь человека бесценна.

Но существует вполне четкое понятие стоимости человеческой жизни, определяемой затратами на рождение, воспитание, образование, получаемым человеком доходом и т.п. Эту стоимость приходится учитывать при страховании и при оценке экономического ущерба, наносимого гибелью людей во время катастроф.

Например, стоимость жизни одного жителя США при авиакатастрофах оценивается в 600-800 тысяч долларов.

Поэтому когда ставится вопрос о приемлемом риске от загрязнения среды или от реакторов АЭС, приходится учитывать не только потенциалы угроз, но и «стоимости жизни», определяемые альтернативами экономического развития общества и деградации окружающей среды.

Источник: https://uchebnik.biz/book/303-yekologiya-priroda-chelovek-texnika/45-74-ocenka-yekologicheskogo-riska/

Экология СПРАВОЧНИК

7.4. Экологически приемлемый риск

Оценка экологического риска — это научное исследование, в котором факты и научный прогноз используются для оценки потенциально вредного воздействия на окружающую среду различных загрязняющих веществ и других агентов.[ …]

Статистическая информация об уровнях риска, обусловленных хроническим загрязнением окружающей среды, чрезвычайно разнородна и противоречива.

В экологии и экопатологии применяются так называемые стресс-индексы для различных неблагоприятных воздействий факторов среды, которые по своему функциональному смыслу пропорциональны значениям экологического риска (табл. 8.3).

Пестициды, тяжелые металлы и отходы АЭС занимают в этом списке первые места.[ …]

Подобные расхождения нельзя приписывать только невежеству людей. Специалистам приходится часто сталкиваются со стойкими общественными предубеждениями, которые способны оказывать серьезное влияние на экономическую политику и систему принятия решений.

Это явление включает и феномен экофобии — навязчивой боязни поражения опасными факторами окружающей среды. Чаще всего она проявляется в виде радиофобии и хемофобии.

После Хиросимы и Чернобыля в сознании многих людей вероятность болезни и смерти от радиации стала «весить» несравненно больше, чем смерть от промышленных и транспортных аварий, от пьянства и драк, от ударов электрическим током, от «кухонных» пожаров, хотя любая из этих причин убивает в сотни и тысячи раз больше людей, чем радиация. Люди невольно преувеличивают опасность факторов, которые не поддаются индивидуальному психологическому контролю.[ …]

От экофобий нельзя отмахиваться, как это до сих пор делают представители заинтересованных ведомств, считая их «психозами мнительных невежд». Радиофобия и хемофобия стали закономерными проявлениями экологического стресса современного общества.

Даже при очень малых дозах радиации, аллергенного раздражения или вообще при чисто кажущемся поражении они могут приводить у некоторых людей к вполне определенным психогенным клиническим эффектам и стойким психосоматическим заболеваниям, за которые общество должно нести такую же ответственность, как и за прямое радиационное или химическое поражение людей. Знание и понимание источников и уровней опасности значительно снижает психологический стресс. Об этом, в частности, свидетельствует значительно меньший уровень психосоматических проявлений у жителей г. Курчатова и персонала, обслуживавшего Семипалатинский полигон, или жителей г. Славутича и персонала ЧАЭС по сравнению с населением прилегающих зон.[ …]

В каждом из крупных энергетических реакторов АЭС заключено от 100 до 200 т обогащенного урана с общей активностью порядка 108—109 Ки. Энергетика реактора тем эффективнее, чем ближе параметры физических процессов в нем к грани ядерного взрыва.

Это огромный потенциал опасности, так как даже одна тысячная доля кюри — милликюри — может вызвать у человека серьезное лучевое поражение. Совершенно очевидно, что требования безопасности должны сводить к нулю вероятность «реализации» этого потенциала, т.е.

обеспечивать идеальную изоляцию ядерного топлива, экранировать излучения, с высочайшей надежностью поддерживать режим эксплуатации у «красной черты» и предельно минимизировать эксплуатационные утечки наведенной радиоактивности.[ …]

Для престижа ядерной энергетики до серьезных аварий реакторов (Тримайл-Айленд, США, 1979; Чернобыль, 1986) эти свидетельства были не нужны: безопасность и перспективность АЭС считались бесспорными. Аварии, особенно чернобыльская, все изменили.

В оценках риска радиационных катастроф вместо ничтожных величин появились значения УйЪ а (10-3—10 5) год”1. Ядерной энергетике пришлось защищаться. Самым распространенным доводом стало количественное сопоставление экологических угроз со стороны атомных и угольных электростанций (табл. 8.4).

В одной из таких работ сравнивается число преждевременных смертей, связанных с полными топливными циклами — угольным и атомным (Я.В. Шевелев, 1989).[ …]

Но действительный эффект чернобыльской аварии в этом сравнении не учтен. А он еще долго будет продолжать действовать, даже если подобная катастрофа больше никогда не повторится.[ …]

Управление экологическим риском является процедурой принятия решений, в которой учитывается оценка экологического риска, а также технологические и экономические возможности его предупреждения. Обмен информацией о риске также включается в этот процесс. Схема процесса управления риском представлена на рис. 8.7.[ …]

В соответствии с принципом уменьшающихся рисков важным средством управления является процедура замещения рисков.

Согласно ей риск, вносимый новой техникой, социально приемлем, если ее использование дает меньший вклад в суммарный риск, которому подвергаются люди, по сравнению с использованием другой, альтернативной техники, решающей ту же самую хозяйственную задачу. Эта концепция тесно связана с проблемой экологической адекватности качества производства.[ …]

Поэтому есть основания считать, что из всех возможных подходов к объективному определению приемлемого риска техногенных воздействий на человеческое общество в целом или на население какого-либо региона следует выбирать тот подход, который дает наименьшее значение вероятности поражения.

Нет сомнений, что это именно экологический подход, который в качестве объекта опасности рассматривает не самого человека, а весь комплекс окружающей его среды, учитывая в историческом плане все ее отклонения от естественного состояния.

Остальные подходы, особенно социальный, экономический, технический, не лишены известного произвола, связанного с вне-экологически ми потребностями и интересами общества. Они в той или иной степени компромиссны.[ …]

Рисунки к данной главе:

Схема процедур анализа риска и управления риском

Источник: https://ru-ecology.info/post/100779500060032/

Book for ucheba
Добавить комментарий