9.1. ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ

Потоки веществ и энергии в экосистеме. Продуктивность сообщества – ОСНОВЫ ГЕНЕТИКИ

9.1. ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ

Цели: сформировать знания о потоке веществ и энергии в экосистеме, правилах экологических пирамид (массы энергии, численности); овладеть понятиями биологической продуктивности; способствовать формированию не только знаний, но и убеждений учащихся в необходимости сохранения ценности и устойчивости экосистем; продолжить формирование умений работать с таблицами, текстом учебника, анализировать и формулировать выводы.

Оборудование: карточки-задания для проверки знаний; схема “Поток энергии через пастбищную пищевую систему”, схемы экологических пирамид.

Ход урока

I. Организационный момент

На доске:

Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца.

К. Фиаммарион

II. Проверка и актуализация знаний

1. Работа по карточкам ((См. приложение 2), карточки № 1-2).

2. Фронтальная работа с классом ((См. приложение 2), карточка №3).

III. Изучение новой темы

1. Рассказ учителя.

Чтобы ответить на вопрос о причинах небольшой длины пищевых цепей, нужно рассмотреть поток энергии в цепях питания.

Поддержание жизнедеятельности организмов и круговорот веществ в экосистемах возможны только за счет постоянного притока энергии. В конечном итоге вся жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в энергию химических связей органических соединений.

Растения связывают в ходе фотосинтеза в среднем лишь около 1% энергии света. Животное, съевшее растение получает запасенную им энергию не полностью. Кроме этого, часть пищи не переваривается и выделяется в виде экскрементов. Обычно усваивается от 20 до 60% растительного корма. Животные, как и растения, теряют часть энергии при дыхании.

Энергия, оставшаяся после потерь, связанных с процессами дыхания, пищеварения и выделения, идет на рост, поддержание жизнедеятельности и размножение. Следовательно, уже на первом этапе происходит значительная потеря энергии их пищевой цепи. Хищник, съевший растительноядное животное, представляет третий трофический уровень.

Он получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы в виде прироста.

Энергия, теряющаяся при дыхании, не передается другим организмам. Энергия же, заключенная в фекалиях (экскрементах) и отходах жизнедеятельности, передается детритофагам (мелким организмам, питающимся кусочками частично разложившегося материала — детритам) и редуцентам и, таким образом, не теряется для экосистемы.

Таким образом, ошибочным является мнение о том, что энергия в пищевых сетях может долго мигрировать от одного организма к другому. На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток.

По грубым подсчетам, потери энергии при переходе с одного трофического уровня на другой (более высокий) составляют около 90%. Поэтому запас энергии, накопленный зелеными растениями в целях питания, стремительно иссякает.

Исходя из вышесказанного, понятно, почему в природе пищевая цепь редко превышает 6—7 звеньев и обычно состоит из 4—5.

Потерянная в цепях питания энергия может быть восполнена только поступлением новой ее порции. Поэтому в экосистемах не может быть круговорота энергии, аналогичного круговороту веществ. Экосистема функционирует только за счет направленного потока энергии, постоянного поступления ее извне в виде солнечного излучения, или готовых органических веществ.

Трофические цепи, в которых первый трофический уровень занимают зеленые растения (фотомитетики), второй — пастбищные животные (в широком смысле, все организмы, питающиеся растениями) и третий — хищники, называются пастбищными или цепями выедания, или цепями потребления (растение → растительноядное животное → хищник).

Цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных, называются детритными цепями, или цепями разложения (детрит → детритофаг — хищник).

2. Закрепление изученного материала.

Найдите в карточке № 3 примеры пастбищной и детритной цепей.

— Органическое вещество, создаваемое в экосистемах в единицу времени (год, месяц, сутки и т.п.), называют биологической продукцией. Суммарная масса тел организмов определенной группы или всего сообщества в целом называется биомассой. Биологическая продукция экосистем — это скорость создания в них биомассы, а продуктивность — способность к созданию (продуцированию) новой биомассы.

— Изучая продуктивность экосистем, мы имеет дело с потоком энергии, проходящей через ту или иную экосистему.

— Рассмотрим схему потока энергии через пастбищную пищевую цепь (см. приложение I).

Первичная продукция — скорость накопления энергии первичными продуцентами в форме органического вещества, которое может быть использовано в пищу.

Валовая первичная продукция — скорость, с которой растения накапливают химическую энергию.

Чистая первичная продукция — скорость накопления органического вещества за вычетом энергии, которая расходуется растениями на дыхание. Это энергия, которую могут использовать организмы следующих трофических уровней.

Вторичная продукция — количество органического вещества, накопленного гетеротрофными организмами.

Источник: https://compendium.su/biology/9klass_2/44.html

9.1. ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ: Важнейшая термодинамическая характеристика экосистемы—ее способность

9.1. ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ

Важнейшая термодинамическая характеристика экосистемы—ее способность создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояние с низкой энтропией[2].

Система обладает низкой энтропией, если в ней происходит непрерывное рассеяние легко используемой энергии (например, энергии света или пищи) и превращение ее в энергию, используемую с трудом (например, в тепловую). Упорядоченность экосистемы, т. е.

сложная структура биомассы, поддерживается в результате дыхания всего сообщества, при котором неупорядоченность как бы откачивается из 146 сообщества. Дыхание сообщества можно представить как процесс, обратный фотосинтезу: (CH20) + 02=C02+H20 + Q. Отношение энергии, затрачиваемой в экосистеме на дыхание, т. е.

на поддержание ее жизнедеятельности (R), к энергии, заключенной в структуре биомассы (В), обозначают как меру термодинамической упорядоченности (R/В). Существование экосистемы возможно лишь при притоке из окружающей среды не только энергии, но и вещества, т. е. реальные экосистемы — энергетически и структурно открытые системы.

Все экосистемы связаны воедино благодаря взаимодействию их компонентов, находящихся по отношению друг к другу и неживой среде в подвижном равновесии. Второй закон термодинамики связан с принципом стабильности.

Согласно этой концепции, любая естественная система с проходящим через нее потоком энергии (например, Земля или озеро) склонна развиваться в сторону устойчивого состояния, и в ней вырабатываются саморегулирующие механизмы. В случае кратковременного воздействия на систему извне эти механизмы обеспечивают ее возврат к устойчивому состоянию.

Когда оно достигнуто, перенос энергии обычно идет в одном направлении и с постоянной скоростью, что соответствует принципу стабильности. Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел.

Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы.

Следовательно, первичная продуктивность экосистемы определяется как скорость, с ко- 147 торой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени.

Ключевое слово в понятии продуктивности — скорость. Термин «продуктивность»[3] и выражение «скорость продуцирования» вполне взаимозаменяемы. Даже когда термин «продукция» используется для обозначения количества накопленного органического вещества, в нем всегда учитывается и время.

Первичную продуктивность экосистемы обычно нельзя определить простым подсчетом и взвешиванием имеющихся организмов, хотя по данным о продукции в моменты времени t1 , t2 и т. д. можно получить верные оценки первичной продуктивности. Когда известно количество продукции, образовавшейся в отдельные моменты времени, интегральная продукция за некоторый отрезок времени может быть определена с помощью простейших методов численного интегрирования, среди которых наиболее распространен метод трапеций.

Значения продукции Р’t в отдельные периоды наблюдений t наносятся на график и соединяются ломаной линией (рис. 9.1). Затем вычисляется площадь фигуры, ограниченной осью абсцисс и этой ломаной линией, как сумма площадей отдельных трапеций: P(t1,tn) = 1/2[P'(t1)+P'(t2)](t2- t1)+…+1/2[P'(tn-1) + P'(tn)](tn-tn-1). Полученное значение и есть количество органического вещества, образованного автотрофами за период времени t1,-tn, или первичная продукция данной экосистемы за то же время. В процессе производства органического вещества следует выделить четыре последовательных уровня или ступени. 148 Рис. 9.1. Изменение продукции Р't во времени t (по: Алимов, 1989). Валовая первичная продуктивность — это скорость накопления в процессе фотосинтеза органического вещества, включая ту его часть, которая за время измерений будет израсходована на дыхание. Ее обозначают PG и выражают в единицах массы или энергии, приходящихся на единицу площади или объема в единицу времени. Чистая первичная продуктивность — скорость накопления органического вещества в растительных тканях за вычетом той его части, которая использовалась на дыхание (R) растений в течение изучаемого периода: PN = PG-R. Вторичная продуктивность — скорость накопления органического вещества на уровне консументов. Она обозначается через Р2 , Р3 и т. д. в зависимости от трофического уровня. Чистая продуктивность сообщества — скорость накопления органического вещества, не потребленного гетеротрофами, т.е. чистая первичная продукция за вычетом той ее части, которая в течение изучаемого периода (обычно за вегетационный период или за год) была потреблена гетеротрофами: PN — (P2 + Р3 + Р4+ …). На каждый момент времени чистая продукция сообщества выражается наличной биомассой. Иначе ее называют урожаем на корню. Урожай на корню постоянно меняется: весной он ничтожен, а осенью достигает максимума. Следует отличать урожай на корню, т. е. на дан- 149 ный момент времени, от урожая за годовой цикл. Наличную биомассу, или урожай на корню, нельзя путать с продуктивностью. Так, на богатом пастбище, выедаемом скотом, урожай травы на корню, очевидно, будет гораздо меньше, чем на менее продуктивном пастбище, на которое в период измерения не выгоняли скот. Следует также различать продукцию текущую и общую. Если сосновый лес на площади 1 га в некоторых конкретных условиях способен за время своего существования произвести 200 м2 древесной массы, то это будет общая продукция. Однако за один год такой лес создает всего 1,7-2,5 м2 древесины. Эта величина и есть текущая продукция, или годичный прирост, а также урожай за годовой цикл. В содержании понятия «продуктивность» наглядно отражается отличие механизма движения потока энергии, пронизывающего всю экосистему, от той его части, которая проходит только через живые компоненты. Экосистема получает поток солнечной энергии hv (рис. 9.2). Часть энергии в форме дыхания (R) организмы затрачи- src=”/files/uch_group36/uch_pgroup216/uch_uch794/image/92.jpg” alt=”” /> Рис. 9.2. Экосистема с разделением потока энергии на W и R. А — абиотическая совокупность; В — биотическая совокупность, включающая три уровня организации; кольцо — круговорот веществ. 150

вают на поддержание сложной структуры биомассы. Между энергией, идущей на дыхание, и тепловым излучением от близлежащих тел (W) существует обратно пропорциональная зависимость: чем больше W, тем меньше R. Так, высокие скорости продуцирования встречаются там, где физические факторы благоприятны, особенно при дополнительном поступлении в экосистему энергии извне.

Поступления энергии со стороны абиотических компонентов уменьшают затраты живых организмов на поддержание собственной жизнедеятельности, т.е. они компенсируют свои потери тепла на дыхание (при «откачивании» неупорядоченности).

Например, энергия приливов повышает продуктивность природной прибрежной экосистемы, замещая часть энергии, использованной на дыхание, которая иначе должна была бы расходоваться на перенос минеральных веществ, а также на транспорт пищи и отходов.

Следовательно, оценивая продуктивность экосистемы, необходимо учитывать как утечки энергии, связанные со сбором урожая, загрязнением среды, неблагоприятными климатическими условиями и другими типами стрессовых воздействий, так и поступления энергии, которые увеличивают продуктивность, компенсируя потери энергии при дыхании.

https://www.youtube.com/watch?v=GvrkJPrbAJk

Урожай в общепринятом смысле, т. е. чистую первичную продукцию, не потребленную гетеротрофами за вегетационный пеориод, представим в следующем виде:B=PG-R- (P2+P3 + …).  Стремясь получить как можно больший выход полезной продукции, человек в принципе может воздействовать на каждый из членов этого равенства.

Во-первых, он может вкладывать энергию и усилия в увеличение валовой первичной продукции, что подразумевает селекционную работу. Данный путь требует высокого научного потенциала и длительного времени. Во-вторых, человек может компенсировать затраты растений на дыхание, вкладывая энергию в форме работы сельскохозяйственных машин и в виде производства удобрений.

Этот путь экономически более выгоден, но экологически он дороже, чем предыдущий, так как вызывает загрязнения и другие нарушения среды. В-тре- 151 тьих, человек может способствовать уменьшению вторичной продукции.

Экологически данный путь наиболее дорогостоящ, так как борьба с насекомыми, вредящими сельскому хозяйству, связана не только с загрязнением среды пестицидами, но и с уменьшением видового разнообразия и, следовательно, нарушением устойчивости агроценозов.

Рассмотрим баланс между валовой первичной продукцией и дыханием сообщества.

Допустим, что вся чистая первичная продукция потребляется консументами первого порядка. Сохраняя аналогичные допущения для последующих трофических уровней, запишем систему уравнений (символ «пр» означает продуцент, «к» —консумент; римские цифры — порядок консументов):

Суммирование равенств показывает, что вся валовая первичная продукция полностью расходуется на автотрофное и гетеротрофное дыхание так, что в конце годового цикла ничего не остается. Подобное равновесие между продуцированием и потреблением наблюдается в наиболее стабильных сообществах, где все произведенное за год органическое вещество утилизируется значительным числом разнообразных консументов. В балансе между валовой первичной продукцией и дыханием сообщества заключен смысл противоречия между хозяйственными устремлениями человека и стратегией развития природы. Человек заинтересован в повышении годового выхода чистой продукции сообщества, а стратегия развития любой экосистемы направлена на то, чтобы не только произвести за годовой цикл как можно больше, но за это же время и потребить все произведенное. Однако равенство между приходом и расходом —явление достаточно редкое; оно наблюдается в наи- 152 более стабильных сообществах, в частности в тропической зоне, причем создает объективные трудности для развития там сельского хозяйства. Человек, выжигая пышный тропический лес, надеется получить на освободившейся территории высокие урожаи. Однако вскоре оказывается, что почвы на обнаженной территории абсолютно бесплодны — вся годовая продукция росшего на этом месте леса потреблялась различными консументами и в почвах ничего не откладывалось.

В большинстве случаев имеет место превалирование валовой первичной продукции над дыханием сообщества, в результате чего происходит накопление непотребленного органического вещества, например, в форме каменного угля, горючих сланцев, сухих листьев и т.д. Несбалансированность прихода и потребления энергии имеет серьезные последствия для экосистемы. 

Источник: https://bookucheba.com/uchebniki-ekologii_1295/potok-energii-ekosisteme-49553.html

Поток энергии в экосистемах

9.1. ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ

Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах возможны только за счет постоянного притока энергии (рис. 146).

В конечном счете вся жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в химические связи органических соединений. 4етеротрофы получают энергию с пищей. Все живые существа являются объектами питания других, т. е.

связаны между собой энергетическими отношениями. Пищевые связи в сообществах – это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть. Организмы любого вида являются потенциальной пищей многих других видов.

Врагами тлей, например, служат личинки и жуки божьих коровок, личинки мух-сирфид, пауки, насекомоядные птицы и многие другие. За счет дубов в широколиственных лесах могут жить несколько сотен форм различных членистоногих, фитонематод, паразитических грибков и т. п.

Хищники обычно легко переключаются с одного вида жертв на другой, а многие, кроме животной пищи, способны потреблять в некотором количестве и растительную. Таким образом, трофические сети в биоценозах очень сложные и создается впечатление, что энергия, поступившая в них, может долго мигрировать от одного организма к другому.

Рис. 146. Распределение радиации (в кружочках – %) в бореальном смешанном лесу и в посевах кукурузы (по В. Лархеру, 1978): R. отр. – радиация, отраженная от поверхности насаждения; R. погл. – радиация, поглощенная почвой

На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток. Она может передаваться не более чем через 4–6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания (рис. 147).

Место каждого звена в цепи питания называют трофическим уровнем.

Первый трофический уровень – это всегда продуценты, создатели органической массы; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм, – к третьему; потребляющие других плотоядных – соответственно к четвертому и т. д.

Таким образом, различают консументов первого, второго и третьего порядков, занимающих разные уровни в цепях питания. Естественно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в пищевые цепи на разных трофических уровнях.

Так, например, человек, в рацион которого входит как растительная пища, так и мясо травоядных и плотоядных животных, выступает в разных пищевых цепях в качестве консумента первого, второго и третьего порядков. Виды, специализированные на растительной пище, например тли, зайцеобразные, копытные, всегда являются вторым звеном в цепях питания.

Рис. 147. Поток энергии через три уровня простой пищевой цепи (по П. Дювиньо и М.

Тангу, 1968): Пв – продукция валовая; Пч – продукция чистая; К – продукция, использованная на корм; А2, А3 – корм, ассимилированный консументами; н – неиспользованная часть продукции; П2 – вторичная продукция (травоядные); П3 – прирост хищников; Д1-Д3 – траты энергии на обмен веществ (траты на дыхание) на разных уровнях пищевой цепи

Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Неусвоенная часть вновь возвращается во внешнюю среду (в виде экскрементов) и в дальнейшем может быть вовлечена в другие цепи питания.

Процент усвояемости зависит от состава пищи и набора пищеварительных ферментов организма. У животных усвояемость пищевых материалов варьирует от 12–20 % (некоторые сапрофаги) до 75 % и более (плотоядные виды). Ассимилированная организмом пища вместе с запасом в ней энергии расходуется двояким образом.

Большая часть энергии используется на поддержание рабочих процессов в клетках, а продукты расщепления подлежат удалению из организма в составе экскретов (мочи, пота, выделений различных желез) и углекислого газа, образующегося при дыхании.

Энергетические затраты на поддержание всех метаболических процессов условно называют тратой на дыхание, так как общие их масштабы можно оценить, учитывая выделение СО2 организмом. Меньшая часть усвоенной пищи трансформируется в ткани самого организма, т. е.

идет на рост или откладывание запасных питательных веществ, увеличение массы тела. Эти отношения сокращенно можно выразить формулой:

Р = П + Д + Н,

где Р – рацион консумента, т. е. количество пищи, съедаемой им за определенный период времени; П – продукция, т. е. траты на рост; Д – траты на дыхание, т. е. поддержание обмена веществ за тот же период; Н – энергия неусвоенной пищи, выделенной в виде экскрементов.

Передача энергии в химических реакциях в организме происходит, согласно второму закону термодинамики, с потерей части ее в виде тепла. Особенно велики эти потери при работе мышечных клеток животных, КПД которых очень низок. В конечном счете вся энергия, использованная на метаболизм, переходит в тепловую и рассеивается в окружающем пространстве.

Траты на дыхание во много раз больше энергетических затрат на увеличение массы самого организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особей.

У молодых траты на рост могут достигать значительных величин, тогда как взрослые используют энергию пищи почти исключительно на поддержание обмена веществ и созревание половых продуктов. Интенсивность питания снижается с возрастом.

Так, ежесуточный рацион карпов массой от 5 до 15 г составляет почти 1/4 от массы их тела, у более крупных особей – от 150 до 450 г – всего 1/10, а у рыб массой 500–800 г – 1/16.

Коэффициент использования потребленной пищи на рост (К) рассчитывают как отношение продукции к рациону:

где П – траты на рост, Р – количество пищи, съеденной за тот же период.

Двупарноногие многоножки кивсяки в период роста, который продолжается до трех лет, тратят на рост от 6 до 25 % съеденной пищи при усвояемости в среднем 30 %. В последующем их масса стабилизируется. Кивсяки живут до 12 лет. В умеренном поясе они активны 4–5 месяцев в году.

Особь, масса которой во взрослом состоянии 0,5 г, за свою жизнь потребляет 250–300 г опада (80–90 г абсолютно сухой массы). Так как кивсяки многократно линяют, часть усвоенной энергии идет на восстановление покровов.

Таким образом, отношение съеденного в течение жизни корма к массе взрослого животного составляет 500–600: 1.

У такого гетеротермного животного, как малый суслик, который активен всего 2–2,5 месяца в году, это соотношение всего около 150: 1. Средний рацион суслика 30 г сухой массы растений (или в среднем 100 г сырой) при массе зверька 200 г и продолжительности жизни 4 года.

Постоянно активным в течение года рыжим полевкам нужно гораздо больше энергии для поддержания жизнедеятельности. Взрослые зверьки массой 20 г съедают в среднем до 4 г сухого корма в день.

При продолжительности жизни примерно в 24 месяца затрата кормов на жизнь одной особи составляет примерно 30 кг в сырой массе, что приблизительно в 1500 раз больше массы взрослого животного.

Таким образом, основная часть потребляемой с пищей энергии идет у животных на поддержание их жизнедеятельности и лишь сравнительно небольшая – на построение тела, рост и размножение. Иными словами, большая часть энергии при переходе из одного звена пищевой цепи в другое теряется, так как к следующему потребителю может поступить лишь та энергия, которая заключается в массе поедаемого организма.

По грубым подсчетам, эти потери составляют около 90 % при каждом акте передачи энергии через трофическую цепь. Следовательно, если калорийность растительного организма 1000 Дж, при полном поедании его травоядным животным в теле последнего останется из этой порции всего 100, в теле хищника – лишь 10 Дж, а если этот хищник будет съеден другим, то на его долю придется только 1 Дж, т. е. 0,1 %.

Таким образом, запас энергии, накопленный зелеными растениями, в цепях питания стремительно иссякает. Поэтому пищевая цепь включает обычно всего 4–5 звеньев. Потерянная в цепях питания энергия может быть восполнена только поступлением новых ее порций.

Поэтому в экосистемах не может быть круговорота энергии, аналогичного круговороту веществ (рис. 148).

Экосистема функционирует только за счет направленного потока энергии, постоянного поступления ее извне в виде солнечного излучения или готовых запасов органического вещества.

Рис. 148. Схема биогеохимического круговорота на фоне потока энергии (по Ю. Одуму, 1975): Пв – валовая продукция; Пч – чистая продукция; П2 – вторичная продукция; Д – траты энергии на обмен веществ (траты на дыхание); заштрихованная часть рисунка – круговорот вещества

Трофические цепи, которые начинаются с фотосинтезирующих организмов, называют цепями выедания (или пастбищными, или цепями потребления), а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных, – детритными цепями разложения. Таким образом, поток энергии, входящий в экосистему, разбивается далее как бы на два основные русла, поступая к консументам через живые ткани растений или запасы мертвого органического вещества, источником которого также является фотосинтез.

В разных типах экосистем мощность потоков энергии через цепи выедания и разложения различна: в водных сообществах большая часть энергии, фиксированной одноклеточными водорослями, поступает к питающимся фитопланктоном животным и далее – к хищникам и значительно меньшая включается в цепи разложения. В большинстве экосистем суши противоположное соотношение: в лесах, например, более 90 % ежегодного прироста растительной массы поступает через опад в детритные цепи (рис. 149).

А

Б

В

Рис. 149. Разложение листьев в лесной подстилке (деструкционный блок экосистемы):

А – поражение грибным мицелием;

Б – скелетирование животными-сапрофагами;

В – экскременты сапрофагов, входящие в состав гумусного слоя

Дата добавления: 2017-03-29; просмотров: 493; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/9-9103.html

Book for ucheba
Добавить комментарий