Арены (ароматические углеводороды)

Содержание
  1. Тема №20 «Ароматические углеводороды» | CHEM-MIND.com
  2. Строение молекулы бензола
  3. Изомерия и номенклатура ароматических углеводородов
  4. Физические свойства ароматических углеводородов
  5. Химические свойства ароматических углеводородов
  6. Гомологи бензола
  7. Шпаргалка
  8. Ароматические углеводороды
  9. Номенклатура и классификации
  10. Изомерия (структурная)
  11. Строение и физические свойства
  12. Химические свойства
  13. Галогенирование
  14. Нитрование
  15. Алкилирование
  16. Правила ориентации
  17. Реакции присоединения к аренам
  18. Гидрирование
  19. Радикальное хлорирование аренов
  20. Реакции окисления аренов
  21. Методы получения
  22. Применение
  23. Арены — номенклатура, получение, химические свойства
  24. Лекция 8. Арены (ароматические углеводороды)
  25. Урок 4. арены (ароматические углеводороды) – Химия – 10 класс – Российская электронная школа
  26. Арены (ароматические углеводороды)
  27. Строение аренов
  28. Гомологический ряд аренов
  29. Номенклатура аренов
  30. Изомерия аренов
  31. Химические свойства аренов
  32. 1. Реакции присоединения
  33. 1.1. Гидрирование
  34. 1.2. Хлорирование аренов
  35. 2.Реакции замещения
  36. 2.1. Галогенирование
  37. 2.2. Нитрование
  38. 2.3. Алкилирование ароматических углеводородов
  39. 2.4. Сульфирование ароматических углеводородов
  40. 3. Окисление аренов
  41. 3.1. Полное окисление – горение
  42. 3.2. Окисление гомологов бензола
  43. 4.Ориентирующее действие заместителей в бензольном кольце
  44. 5. Особенности свойств стирола
  45. Получение аренов
  46. 2. Дегидроциклизация алканов
  47. 3. Дегидрирование циклоалканов
  48. 4. Декарбоксилирование солей бензойной кислоты
  49. 5. Алкилирование бензола и его гомологов
  50. 6. Тримеризация ацетилена
  51. 7. Получение стирола

Тема №20 «Ароматические углеводороды» | CHEM-MIND.com

Арены (ароматические углеводороды)

Ароматические углеводороды — соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителя­ми ароматических углеводородов являются бензол и его гомологи — продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение — бензол — было открыто в 1825 г. М. Фарадеем. Была уста­новлена его молекулярная формула — C6H6.

Если сравнить его состав с составом предельного углево­дорода, содержащего такое же количество атомов углерода, — гексаном (C6H14), то можно заметить, что бензол содержит на восемь атомов водорода меньше.

Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приво­дит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена-1,3,5.

Таким образом, молекула, со­ответствующая формуле Кекуле, содержит двойные свя­зи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения:ги­дрирования, бромирования, гидратации и т. д.

Однако данные многочис­ленных экспериментов по­казали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температу­рах и освещении), устойчив к окислению. Наиболее ха­рактерными для него явля­ются реакции замещения, следовательно, бензол по характеру ближе к предель­ным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензола. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод-углеродные связи в бензоле равноценны, и их свойства не похо­жи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или фор­мулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола?

На основании данных исследований и расче­тов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sр2-гибридизации и лежат в одной плоскости. Негибридизованные р-орбитали атомов углерода, составляющие двой­ные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя еди­ную π-систему. Таким образом, система череду­ющихся двойных связей, изображенных в фор­муле Кекуле, является циклической системой сопряженных, перекрывающихся между собой π-связей.

Эта система представляет собой две то­роидальные (похожие на бублик) области элек­тронной плотности, лежащие по обе стороны бен­зольного кольца.

Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π-система) более логично, чем в виде циклогексантриена-1,3,5.

Американский ученый Л. Полинг предло­жил представлять бензол в виде двух граничных структур, отличающихся распределением элект­ронной плотности и постоянно переходящих друг в друга:

т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерений длин связей подтверждают это предположение. Выяснено, что все связи С—С в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С—С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы ко­торых содержат несколько циклических структур, например:

Изомерия и номенклатура ароматических углеводородов

Для гомологов бензола характерна изомерия по­ложения нескольких заместителей. Простейший гомолог бензола — толуол (метилбензол) — не име­ет таких изомеров; следующий гомолог представ­лен в виде четырех изомеров:

Основой названия ароматического углеводорода с небольшими заместителями является слово бен­зол. Атомы в ароматическом кольце нумеруют, на­чиная от старшего заместителя к младшему:

Если заместители одинаковые, то нумерацию проводят по самому короткому пути: например, вещество:

называется 1,3-диметилбензол, а не 1,5-диметил­бензол.

По старой номенклатуре положения 2 и 6 на­зывают ортоположениями, 4 — пара-, 3 и 5 — ме­таположениями.

Физические свойства ароматических углеводородов

Бензол и его простейшие гомологи в обычных ус­ловиях — весьма токсичные жидкости с характер­ным неприятным запахом. Они плохо растворяются в воде, но хорошо — в органических растворителях.

Химические свойства ароматических углеводородов

Реакции замещения. Ароматические углеводороды вступают в реакции замещения.

1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (III), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрование бензола и его гомологов. При вза­имодействии ароматического углеводорода с азот­ной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитро­группу — NO2:

Восстановлением нитробензола получают ани­лин — вещество, которое применяется для полу­чения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.

Реакции присоединения. Ароматические соеди­нения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются цикло­гексан и его производные.

1. Гидрирование. Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнора­дикальной:

Химические свойства ароматических углеводородов – конспект

Гомологи бензола

Состав их молекул отвечает формуле CnH2n-6. Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы C8H10:

По старой номенклатуре,   употребляемой для указания относительного расположения двух одина­ковых или   разных заместителей в бензольном коль­це, используют приставки орто- (сокращенно о-) — заместители расположены у соседних атомов   углерода, мета- (м-) — через   один атом углерода и пара- (п-) — заме­стители   друг против друга.

Первые члены гомоло­гического ряда бензола — жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями. Гомологи бензола вступают в реак­ции замещения:

бромирование:

нитрование:

Толуол окисляется перманганатом при нагрева­нии:

Шпаргалка

Справочный материал для прохождения тестирования:

Таблица Менделеева Таблица растворимости

Источник: https://www.chem-mind.com/2017/04/02/%D0%B0%D1%80%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D1%83%D0%B3%D0%BB%D0%B5%D0%B2%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4%D1%8B/

Ароматические углеводороды

Арены (ароматические углеводороды)

Ароматические соединения (арены) – циклические соединения содержащие, как правило 5- и 6-членные циклы, имеющие замкнутую систему сопряженных связей. Боковые цепи не обязаны содержать сопряженные связи.

Номенклатура и классификации

Термин «ароматические соединения» обязан наличию запаха у многих представителей этого класса соединений. В дальнейшем понятие «ароматичность» приобрело другой смысл.

Ароматичность молекулы характеризует ее повышенную устойчивость, которая обусловлена делокализацией π-электронов в циклической системе.

Критерии ароматичности:

1.Атомы углерода в состоянии sp2-гибридизации создают замкнутую систему.

2.Атомы углерода образуют единую плоскость.

3.Цикл из сопряженных связей включает в себя 4n + 2 π-электронов (где n – целое число). Этот принцип называется правилом Хюккеля.

В зависимости от n можно выделить следующие простейшие ароматические системы:

•Системами с 2 π-электронам являются производные катиона циклопропенилия и дикатионциклобутадиена.

•Системы с 6 π-электронами – это бензол и его гомологи – очень распространены в природе, входят в состав всех живых белковых организмов; пяти- и шестичленные циклы, могут содержать один или несколько гетероатомов, обычно азота, кислорода или серы. Распространены в природе и химическом «быту» из них – пиррол, фуран, тиофен, пиридин) [7].

•Системы с 10 π-электронами – это в первую очередь нафталин. Кроме того, широко встречается в природе конденсированные бензольные кольца. Другой представитель – азулен. Это изомер нафталина, содержащий в себе 5- и 7-членные кольца. Азулен часто встречается в эфирных маслах, но распространенность гораздо меньше, чем у бензола и нафталина.

Сюда же относятся индол, хинолин, изохинолин, хиназолин, хиноксалин, другие системы, основанные на бензольном кольце, конденсированном с другим кольцом, в котором находится гетероатом. Широко распространены в природе.

•Системы с 14 π-электронами: антрацен, фенантрен – конденсированные бензольные кольца обоих кольцах. Широко распространены в природе.

Для ароматических соединений часто используют тривиальные названия (толуол, ксилол, кумол и т. п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова бензол (корень):

С6H5–CH3С6H5–C2H5С6H5–C3H7
Метилбензол (толуол)ЭтилбензолПропиленбензол

Если радикалов более одного, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Нумерация организовывается таким образом, чтобы заместители имели наименьшую сумму номеров положений. Например:

1,2-Диметилбензол     1,3-Диметилбензол     1,4-Диметилбензол

Для дизамещенных бензолов R–C6H4–R распространен способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками:

  • орто- (о-) – заместители у соседних атомов углерода кольца, т.е. 1,2-положениях к опорному;
  • мета- (м-) – заместители через один атом углерода (в 1,3-положениях к опорному);
  • пара- (п-) – заместители на противоположных сторонах кольца (в 1,4-положениях к опорному).
1,2-Диметилбензол     1,3-Диметилбензол     1,4-Диметилбензол

Ароматические одновалентные радикалы имеют общее название «арил». Из них наиболее распространены в номенклатуре органических соединений два: C6H5– (фенил) и C6H5CH2– (бензил).

Изомерия (структурная)

  • положения заместителей для ди-, три- и тетра-замещенных бензолов (например, о-, м- и п-ксилолы);
  • углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода:
    н-ПропилбензолИзопропилбензол (кумол)
  • изомерия заместителей R, начиная с R=С2Н5. Например, молекулярной формуле С8Н10 соответствуют 4 изомера:

Строение и физические свойства

Бензол и другие «легкие» гомологи – бесцветные жидкие вещества (см. табл.), нерастворимы в воде, но хорошо растворяющиеся во многих органических жидкостях. Легче воды. Легко воспламеняются. Бензол является очень токсичным веществом [8].

Таблица

Название Формула Т. пл., °С Т. кип., °С
БензолC6H65,580
ТолуолC6H5CH3 –95111
ЭтилбензолC6H5C2H5 –95136
Изопропилбензол (кумол)C6H5CH(CH3)2 –96152
СтиролC6H5CH=CH2 –31145

Химические свойства

Химические свойства ароматических соединений сильно отличаются от свойств других классов соединений из-за делокализации шести π-электронов в циклической системе, которые понижают энергию молекулы.

В результате в молекуле повышается устойчивость. Арены практически не вступают в реакции присоединения или окисления, приводящие к нарушению ароматичности. Для них наиболее распространены реакции с сохранением ароматической системы, т. е.

замещения атомов водорода в составе цикла.

Так как в бензольном кольце за счет системы сопряженных связей с обеих сторон от плоскости кольца наблюдается повышенная электронная плотность, то бензольное кольцо является нуклеофилом и склонно взаимодействовать с электрофильным реагентом. Поэтому для ароматических соединений наиболее типичны реакции электрофильного замещения.

Галогенирование

Замена атома водорода в бензольном кольце на какой-либо из галогенов наблюдается, как правило, в присутствии катализаторов AlCl3, AlBr3, FeCl3 (кислот Льюиса):

C6H6 + Cl2    C6H5Cl+ HCl.
Хлорбензол

Нитрование

Бензол хорошо взаимодействует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

C6H6 + HNO3 C6H5NO2+ H2O.
Нитробензол

Алкилирование

Алкильная группа замещает атом водорода в бензольном кольце при взаимодействии с алкилгалогенидами (реакция Фриделя–Крафтса) или алкенов с катализатором, например AlCl3 (кислота Льюиса):

C6H6 + CH3Cl C6H5CH3+ HCl.
  Толуол(метилбензол)

Гомологи бензола, содержащие боковые цепи, активнее вступают в реакции замещения.

Например, при нитровании толуола С6Н5CH3 может происходить замещение не одного, а одновременно трех атомов водорода с образованием 2,4,6-тринитротолуола:

Толуол 2,4,6-Тринитротолуол(тротил, тол)

В этом случае хорошо иллюстрируется взаимное влияние атомов в молекуле на реакционную способность вещества. С одной стороны, метильная группа СH3 (за счет +I-эффекта) повышает электронную плотность в бензольном кольце в положениях 2, 4 и 6 и облегчает замещение именно в этих положениях.

Причиной именно такой ориентации при электрофильном замещении является взаимное влияние атомов в молекуле.

В незамещенном бензоле С6Н6 электроны в кольце распределены равномерно, а в замещенных ароматических соединениях под влиянием заместителя происходит перераспределение электронов и образуются области повышенной и пониженной электронной плотности, что оказывает влияние направления реакций электрофильного замещения. Таким образом, атака нового заместителя определяется природой уже имеющегося заместителя.

Правила ориентации

Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т. е. оказывают ориентирующее действие.

По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода.

Орто-пара-ориентанты направляют замещение преимущественно в орто- и пара-положения.

К ним относятся электроннодонорные группы (электронные эффекты групп указаны в скобках):

–R (+I); –OH (+M,–I); –OR (+M,–I); –NH2 (+M,–I); –NR2 (+M,–I),

+M-эффект в этих группах сильнее, чем –I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто- и пара-положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.

Пример:

Ориентанты 1-го рода повышают в бензольном кольце электронную плотность, это приводит к повышению его активности в реакциях электрофильного замещения (по сравнению с бензолом).

Галогены занимают особое место среди ориентантов 1-го рода, проявляющие электронно-акцепторные свойства: –F (+M < –I), –Cl (+M < –I), –Br (+M < –I).

Являясь орто-пара-ориентантами, галогены замедляют электрофильное замещение по причине сильного –I-эффекта электроотрицательных атомов галогенов, понижающих электронную плотность в кольце.

Ориентанты 2-го рода (по-другому – мета-ориентанты) направляют замещение преимущественно в мета-положение.

К таким заместителям относятся электронно-акцепторные группы:

–CH=O (–M, –I); –SO3H (–I); –NO2 (–M, –I); –COOH (–M, –I); –NH3+ (–I); –CCl3 (–I).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто- и пара-положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета-положении, где электронная плотность несколько выше [9].

Пример:

Все ориентанты 2-го рода понижают электронную плотность во всем бензольном кольце, снижая его степень активности для реакций электрофильного замещения.

Легкость электрофильного замещения для соединений (приведенных в качестве примеров) падает в ряду:

толуол > бензол > нитробензол.

Но нужно учитывать, что под влиянием бензольного кольца группа СH3 в толуоле становится активнее в реакциях окисления и радикального замещения по сравнению, например, с метаном СH4.

Поэтому толуол (в отличие от метана) окисляется в мягких условиях (обесцвечивает подкисленный раствор KMnO4 при нагревании):

Реакции присоединения к аренам

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

Гидрирование

Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

Радикальное хлорирование аренов

В условиях радикальных реакций (ультрафиолетовое облучение, повышенная температура) возможно присоединение галогенов к ароматическим соединениям. При радикальном хлорировании бензола получен «гексахлоран» (средство борьбы с вредными насекомыми).

Реакции окисления аренов

Бензол не окисляется даже под действием сильных окислителей (KMnO4, K2Cr2O7 и т. п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений [5, 6].

Гомологи бензола, в отличие от самого бензола, окисляются легко. При обработке перманганатом калия будут окисляться только боковые цепи:

C6H5–CH3 + 3[O] → C6H5–COOH + H2O.
  Толуол   Бензойная  кислота

Наращивание боковой насыщенной цепи (этилбензол, пропилбензол и т. д.) также дает на выходе бензойную кислоту, так как разрыв связи происходит между двумя ближайшими к кольцу атомами углерода в боковой цепи.

Алкильные группы в алкилбензолах окисляются легче, чем алканы. Это объясняется влиянием бензольного кольца на атомы в боковой цепи.

Бензол и его гомологи на воздухе горят коптящим пламенем, что обусловлено высоким содержанием углерода в их молекулах:

2C6H6 + 15O2 → 12CO2 + 6H2O.

Бензол и его летучие гомологи образуют с воздухом и кислородом взрывоопасные смеси.

Методы получения

Уголь и нефть – основной источник ароматических углеводородов.

При коксовании каменного угля образуется каменноугольная смола, из которой выделяют бензол, толуол, ксилолы, нафталин и многие другие органические соединения.

Ароматизация нефти:

а) дегидроциклизация (дегидрирование и циклизация) насыщенных УВ, состоящих, как минимум из 6 атомов углерода в основной цепи. Реакция проходит при нагревании в присутствии катализатора:

б) дегидрирование циклоалканов, состоящих из шести атомов:

Алкилирование бензола галогеналканами или алкенами в присутствии безводного хлорида алюминия:

Тримеризация алкинов над активированным углем (реакция Зелинского):

Применение

Бензол С6Н6 – основа для получения различных ароматических соединений – нитробензола, хлорбензола, анилина, фенола, стирола и т. д., применяемых в производстве лекарств, пластмасс, красителей, ядохимикатов и многих других органических веществ.

Толуол С6Н5–СН3 используется для производства лекарственных и взрывчатых веществ (тротил, тол), а также красителей.

Ксилолы С6Н4(СН3)2 в виде смеси изомеров (орто-, мета- и пара-) применяется как растворитель.

Изопропилбензол (кумол) С6Н4–СН(СН3)2 – основа для получения фенола и ацетона.

Винилбензол (стирол) C6H5–CН=СН2 используется для получения полистирола – важного для промышленности полимера.

Бензпире́н или бензапире́н – химическое соединение, относящееся к первому классу опасности. Источником его образования является сгорание углеводородного жидкого, твёрдого и (реже) газообразного топлива. Концентрируется преимущественно в почве, меньше – в воде. Из почвы мигрирует в ткани растений и продолжает своё движение дальше в пищевой цепочке.

Источник: http://mmlab5.uginfo.sfedu.ru/tutorial/chapters/chapter5_1.html

Арены — номенклатура, получение, химические свойства

Арены (ароматические углеводороды)

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Лекция 8. Арены (ароматические углеводороды)

Арены (ароматические углеводороды)

План

1.Классификацияароматических углеводородов.

2.Гомологический ряд моноциклическихаренов,номенклатура, получение.

3.Изомерия, строение бензолаи его гомологов.

4.Свойства аренов.

Аренами называютбогатые углеродом циклическиеуглеводороды, которые содержат в молекулебензольное ядро и обладают особымифизическими и химическими свойствами.Арены по числу бензольных колец вмолекуле и способа соединения цикловподразделяют на моноциклические (бензоли его гомологи) и полициклические (сконденсированными и изолированнымициклами) соединения.

Ареныбензольного ряда можно рассматриватькак продукты замещения атомов водородав молекуле бензола на алкильные радикалы.Общая формула таких аренов СnH2n-6. Вназвании монозамещенных аренов указываютназвание радикала и цикла (бензол):

бензол метилбензол (толуол) этилбензол.

Вболее замещенных аренах положениерадикалов указывают наименьшими цифрами,в дизамещенных аренах положение радикаловназывают: 1,2 – орто (o-)-,1,3 – мета (м-)-и 1,4 – пара (п-)-:

1,3-диметилбензол 1,2-метилэтилбензол

м-диметилбензол(м-ксилол) о-метилэтилбензол(о-ксилол)

Для аренов широкораспространены тривиальные названия(некоторые названия указаны в скобках).

Нахождениев природе.

Ароматическиеуглеводороды встречаются в растительныхсмолах и бальзамах. Фенантренв частично или полностью гидрированномвиде содержится в структурах многихприродных соединений, например стероидов,алкалоидов.

Получениеаренов:

1.сухая перегонка каменного угля;

2.дегидрирование циклоалканов

3.дегидроциклизация алканов с 6 и болееатомами углерода в составе

4.алкилирование

5.декарбоксилирование и восстановлениекислородсодержащих соединений

Изомерия.Длягомологов бензола характерна структурнаяизомерия: различное строение углеродногоскелета бокового радикала и различныесостав и расположение радикалов вбензольном кольце. Например, изомерыароматических углеводородов составаС9Н12(пропилбензол,изопропилбензол, о-метилэтилбензол и1,2,4-триметилбензол):

Строение.Ароматическиеуглеводороды имеют целый ряд особенностейв электронном строении молекул.

Структурную формулубензола впервые предложил А. Кекуле.Этошестичленныйцикл с чередующимися двойными и одинарнымисвязями , приэтом двойныесвязи перемещаются в структуре:

.

В обеихформулахуглерод четырехвалентен, все атомыуглерода равноценны и дизамещенныебензола существуют в виде трех изомеров(орто-,мета-,пара-).

Однако такая структура бензолапротиворечила его свойствам: бензол невступал в характерные для непредельныхуглеводородов реакции присоединения(например,брома) и окисления(например, с перманганатом калия), длянего и его гомологов основной типхимического превращения – реакциизамещения.

Современный подходк описанию электронного строения бензоларазрешает это противоречие следующимобразом.Атомы углерода в молекуле бензоланаходятся в sр2-гибридизации.

Каждый из атомов углерода образует триковалентные σ-связи- 2 связи с соседними атомами углерода( sр2-sр2-перекрываниеорбиталей) и однус атомомводорода (sр2-s-перекрывание орбиталей).

Негибридизованныер-орбитали за счет бокового перекрыванияобразуют π-электронную сопряженнуюсистему (π,π-сопряжение), содержащуюшесть электронов. Бензол представляетсобой плоский правильный шестиугольникс длиной связи углерод-углерод 0,14нм,связи углерод-водород 0,11нм, валентнымиуглами 1200:

Молекулабензола стабильнее циклических соединенийс изолированными двойными связями,поэтому бензол и его гомологи склоннык реакциям замещения (бензольное кольцосохраняется), а не присоединения иокисления.

Сходство в строениии свойствах (ароматичность) с бензоломпроявляют и другие циклические соединения.Критерии ароматичности (Э. Хюккель,1931г.):

а)плоская циклическая структура , т.е.атомы, образующие цикл, находятся вsр2-гибридизации;б) сопряженная электронная система; в)число электронов (N) в кольце равно 4n+2,где n- любое целочисленное значение – 0,1,2,3 ит.д.

Критерии ароматичностиприменимы как к нейтральным, так изаряженным циклическим сопряженнымсоединениям, поэтому ароматическимисоединениями будут, например:

или

фуран катион циклопропенила.

Для бензола идругих ароматических соединений наиболеехарактерны реакции замещения атомовводорода при углеродных атомах в циклеи менее характерны реакции присоединенияпо π-связи в цикле.

Физическиесвойства.

Бензоли его гомологи являются бесцветнымижидкостями и кристаллическими веществамисо своеобразным запахом. Они легче водыи плохо в ней растворяются. Бензолнеполярное соединение(μ=0), алкилбензолы –

полярныесоединения(μ≠0).

Химическиесвойства.

Электрофильноезамещение. Наиболеехарактерным превращением для ареновявляется электрофильное замещение -SЕ.Реакция протекает в две стадии с образованием промежуточного σ-комплекса:

Условияхреакции: температура 60-800С,катализаторы – кислоты Льюса илиминеральные кислоты.

ТипичныеSЕ -реакции:

а)галогенирование (Cl2,Br2):

б) нитрование:

в)сульфирование(H2SO4, SO3,олеум):

г) алкилированиепо Фриделю-Крафтсу (1877г.)(RНal,ROH,алкены):

д) алкилированиепо Фриделю-Крафтсу (галогенангидриды,ангидриды карбоновых кислот):

У гомологов бензолав результате влияния бокового радикала(+I-эффект,электронодонорная группа) π-электроннаяплотность бензольного кольца распределенанеравномерно, увеличиваясьв2,4,6-положениях. ПоэтомуSЕ-реакциипротекают направлено (в 2,4,6- или о-и п-положения).Гомологи бензола по сравнению с бензолом в реакциях этого типа проявляют большуюреакционная активность.

толуол п-хлортолуол о-хлортолуол

Реакции боковыхрадикалов в алкилбензолах (радикальноезамещение – SRи окисление).

Реакциирадикального замещения протекают, каки в предельных углеводородах, по цепномумеханизму и включают стадии инициирования,роста и обрыва цепи. Реакция хлорированияпротекает ненаправлено, реакциябромирования региоселективна – замещениеводорода происходит уα-углеродногоатома.

Валкилбензолах боковаяцепь окисляется перманганатом калия,бихроматом калия с образованиемкарбоновых кислот. Независимо от длиныбоковой цепи, окисляется атом углерода,связанный с бензольным ядром (α-углеродныйили бензильный атом углерода),остальные атомы углерода окисляютсядо СО2иликарбоновых кислот.

этилбензол бензойная кислота

п-метилэтилбензол терефталевая кислота

Реакции бензолас нарушением ароматической системы.

Ароматическиеуглеводороды имеют прочный цикл, поэтомуреакции с нарушением ароматическойсистемы (окисление, радикальноеприсоединение) протекают в жесткихусловиях (высокие температуры, сильныеокислители).

а) радикальноеприсоединение:

1. гидрирование

толуол циклогексан

2. хлорирование

бензол 1,2,3,4,5,6-гексахлорциклогексан(гексахлоран).

Продукт этойреакции представляет смесь пространственныхизомеров.

Ориентацияэлектрофильного замещения в ароматическихсоединениях. Заместителив бензольном кольце по своему ориентирующемувлиянию делятся на два типа: орто-,пара-ориентанты(заместители 1 рода) и мета-ориентанты(заместители 2 рода).

Заместители 1 рода- это электронодонорные группы, которыеповышают электронную плотность кольца,увеличивают скорость реакцииэлектрофильного замещения и активируютбензольное кольцо в этих реакциях:

D(+I-эффект):- R, -СН2ОН,-СН2NН2 ит.д.

D(-I,+М-эффекты):-NH2,-OH,-OR, -NR2,-SH ит.д.

Заместители 2 рода– электроноакцепторные группы, которыепонижают электронную плотность кольца,уменьшают скорость реакции электрофильногозамещения и дезактивируют бензольноекольцо в этих реакциях:

А (-I-эффект):-SO3H,-CF3,-CСl3и т.д.

А(-I,-М -эффект): -НС=О, -СООН,-NO2 ит. д.

Атомы галогенов занимают промежуточноеположение – они понижаютэлектронную плотность кольца, уменьшаютскорость реакции электрофильногозамещения и дезактивируют бензольноекольцо в этих реакциях, однако этоо-,п-ориентанты.

Еслив бензольном кольце находится двазаместителя, то их ориентирующее действиеможет совпадать (согласованнаяориентация)или не совпадать (несогласованнаяориентация).В реакциях электрофильного замещениясоединения с согласованной ориентациейобразуютменьшее количество изомеров, во второмслучае образуется смесь из большегочисла изомеров. Например:

пгидроксибензойнаякислота мгидроксибензойнаякислота

(согласованнаяориентация) (несогласованнаяориентация)

Полициклическиеконденсированные ароматическиеуглеводороды (нафталин, антрацен,фенантрен и т.д.), в основном, по свойствампохожи на бензол, но вместе с тем имеютнекоторые отличия.

Применение:

1.ароматическиеуглеводороды – сырьедля синтеза красителей, взрывчатыхвеществ, лекарственных препаратов,полимеров, поверхностно-активныхвеществ, карбоновых кислот, аминов;

2.жидкие ароматические углеводородыхорошие растворители органическихсоединений;

3.арены- добавкидля получения высокооктановых бензинов.

Знаетели вы, что-В1649 году немецкий химик Иоганн Глаубервпервые получил бензол.

-В1825 году М. Фарадей выделил из светильногогаза углеводороди установил его состав – С6Н6.

-В1830 году Юстус Либих назвал полученноесоединение бензолом (от араб. Вen-аромат+ zoa-сок+ лат. ol[eum]-масло).

-В1837году Огюстом Лораном назван радикалбензола С6Н5-фенил (от греч phenix-освещать).

-В1865 году немецкий химик-органик ФридрихАвгуст Кекуле предложил формулу бензолас чередующимися двойными и одинарнымисвязями в шестичленном цикле.

-В1865-70-х годах В. Кернер предложилиспользовать приставки для обозначениявзаимного расположения двух заместителей:1,2 положение – орто-(orthos- прямой);1,3- мета( meta- после) и 1,4- пара(para- напротив).

-Ароматическиеуглеводороды – высокотоксичные вещества,вызывают отравление и поражение некоторыхорганов, например почек, печени.

-Некоторыеароматические углеводороды – канцерогены(вещества, вызывающие раковые заболевания),например бензол (вызывает лейкемию),один из сильнейших – бензопирен (содержитсяв табачном дыме).

Источник: https://studfile.net/preview/6064544/page:14/

Урок 4. арены (ароматические углеводороды) – Химия – 10 класс – Российская электронная школа

Арены (ароматические углеводороды)

Химия, 10 класс

Урок № 4. Арены (ароматические углеводороды)

Перечень вопросов, рассматриваемых в теме: урок посвящён ароматическим углеводородам, их номенклатуре, физическим и химическим свойствам, а также роли в жизни человека.

Глоссарий

Ароматический углеводород – соединение, содержащее в молекуле специфическую систему чередующихся одинарных и двойных связей (сопряженных π-связей).

Акцептор – атом или группа атомов, принимающих электроны и образующих химическую связь за счёт своей пустой орбитали и неподелённой пары электронов донора.

Гибридизация – процесс взаимодействия разных, но близких по энергии электронных орбиталей, приводящий к их выравниванию по форме и энергии.

Гомология – явление сходства по составу, строению, химическим свойствам и принадлежности к тому же классу одного вещества с другим веществом, но различающиеся друг от друга на одну или несколько групп СН2. Группу СН2 называют гомологической разностью.

Горение – быстро протекающий процесс окисления вещества, сопровождающийся большим выделением тепла и ярким свечением.

Группа функциональная – группа атомов, определяющая наиболее характерные химические свойства вещества и его принадлежность к определенному классу.

Донорное (электронодонорное) свойство – способность атомов элемента отдавать свои электроны другим атомам. Количественной мерой донорных свойств атомов, образующих химическую связь, является их электроотрицательность.

Изомерия – явление существования веществ, одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и вследствие этого по физическим и химическим свойствам. Такие вещества называются изомерами.

Формула структурная – изображение молекулы, в котором показан порядок связывания атомов между собой. Химические связи в таких формулах обозначаются черточками.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Арены (ароматические углеводороды) – органические соединения, имеющие общую формулу СnH2n –6, а в составе молекулы бензольное кольцо (ядро).

Бензольное кольцо – это цикличная группа шести атомов углерода; структуру в виде кольца предложил Ф. А. Кекуле в 1865 г.

Простейшим представителем аренов является бензол С6Н6. Среди других представителей можно отметить, например, кумол (изопропилбензол) C6H5CH(CH3)2.

Формулы бензола

Полная структурная (формула, предложенная Ф.А. Кекуле)
Сокращенная структурная (формула, предложенная Ф.А. Кекуле)
Сокращенная структурная с сопряженными связями

Бензол – первый представитель класса аренов (ароматических углеводородов). Каждый атом углерода в молекуле бензола С6Н6 имеет 4 валентных электрона: s1p3. Тип гибридизации атомов углерода в бензольном кольце молекулы аренов, как и у алкенов, – sp2.

sp2 гибридизация – это смешивание одного s и двух p электронных облаков и образование трёх одинаковых (гибридных). Гибридные облака участвуют в образовании 3 δ-связей, лежащих на плоскости.

Оставшееся у каждого из шести атомов углерода негибридизованное третье p-облако имеет форму гантели.

Шесть p-облаков, перекрываясь с соседними над и под плоскостью δ-связей, участвует в образовании общего 6-электронного облака, которое является общим для всех атомов углерода.

Свойства бензола и других ароматических соединений и их обусловленность электронным строением молекулы бензола.

Физические и химические свойства бензола и его гомологов

Физические свойства бензола

Бензол – бесцветная жидкость с характерным запахом, которая кипит при 80,1 °С, ρ = 0,876 г/cм3. Бензол очень огнеопасен!

Бензол является хорошим растворителем. В пробирку нальем 1 мл дистиллированной воды и добавим несколько капель масла. Масло не растворяется в воде даже после перемешивания содержимого. Во вторую пробирку нальем 1 мл бензола. Перемешаем содержимое. Масло растворяется в бензоле. Однако ввиду высокой токсичности, использование бензола в качестве растворителя нежелательно.

Сопряжение π-связей в молекуле бензола

Образование пи-связей в молекуле бензола обусловлено тем, что негрибридизованные облака образуют общие электронные плотности в виде колец над и под плоскостью молекулы бензола.

Обратите внимание, что в результате образуется общее пи-электронное облако, а все связи между атомами углерода в молекуле бензола оказываются одинаковыми (их еще называют полуторными).

Именно пи-электронные облака являются объяснением того факта, что – в отличие от первоначального варианта представления молекулярной формулы бензола с чередованием одинарных и двойных связей – бензол не проявляет выраженных свойств алкенов.

Химические свойства бензола

Реакции замещения (как алканы)ГалогенированиеРеакция происходит в присутствии катализатора (соли FeBr3, AlCl3, AlBr3):
Нитрование
Алкилирование
Реакции присоединения (как алкены)Каталитическое гидрирование
Радикальное хлорирование
ОкислениеГорение2С6Н6 + 15О2→ 12СО2 + 6Н2О
Взаимодействие с перманганатом калияНе обесцвечивает раствор перманганата калия (реакция не идёт)

Горение бензола

Бензол горит жёлтым коптящим пламенем, если внести в пламя стекло, на нем быстро оседает слой копоти.

Электрофилы – это положительно заряженные частицы, имеющие свободную орбиталь на внешнем электронном уровне и способные образовывать новые ковалентные связи за счёт пары электронов другой молекулы. К электрофилам относятся молекулы галогенов, SO3 и молекулы с сильнополяризованной связью (HCOO-Br+).

Электрофильное замещение в ароматических соединениях можно представить реакцией присоединения-отщепления. Эта реакция проходит в несколько стадий.

При инициации реакции молекула хлора распадается на два иона. Катализатор, например, AlCl3, присоединяя ион хлора Cl−, приобретает отрицательный заряд.

Оставшийся ион хлора Cl+, который является электрофилом, присоединяется к образовавшемуся на катализаторе отрицательному иону AlCl4−.Образованное соединение называется π-комплексом.

Этот комплекс вступает в реакцию с молекулой бензола, обеспечивая присоединение ионов хлора Cl+ к атомам углерода.

Сравнение свойств бензола и толуола

Бензол

Отношение к раствору KMnO4Не окисляется
Горение на воздухе2С6Н6 + 15О2 → 12СО2 + 6Н2О
Реакция гидрирования
Присоединение хлора (галогена)
Замещение водорода хлором (галогеном)
Нитрование

Толуол

Отношение к раствору KMnO4Окисление боковых цепей (в присутствии H2SO4 или KMnO4)
Горение на воздухеC6H5–CH3 + 9O2 → 7CO2 + 4H2O
Реакция гидрирования
Присоединение хлора (галогена)
Замещение водорода хлором (галогеном)
Нитрование

ПРИМЕРЫ И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Определение формулы бензола. Пошаговый тренажер решения задач

Шаг 1.

Найдите молекулярную формулу бензола, если известно, что его пары в 2,78 раз тяжелее азота.

1. Вывод формулы для нахождения относительной массы бензола из формулы относительной плотности.

D (по N2) = Mr (бензола) / Mr (N2), выведем формулу для расчета относительной массы бензола:

Mr (бензола) = D (по N2) [×] Mr (N2).

Ответ: Mr (бензола) = D (по N2) × Mr (N2)

2. Рассчитаем относительную молекулярную массу азота, используя периодическую систему химических элементов Д.И. Менделеева.

Mr (N2) = 2 · 14 = 28.

Ответ: Mr (N2) = 28.

3. Рассчитаем относительную молекулярную массу бензола (с точностью до целых):

Mr (бензола) = 2,78 · 28 = 77,84 ≈ 78.

Ответ: Mr (бензола) = 78

4. Бензол является углеводородом. Все углеводороды состоят из углерода и водорода.

5. Нахождение количества атомов углерода в молекуле бензола. Количество атомов углерода в молекуле бензола равно […].

Ответ: 6.

Пусть количество атомов углерода равно x, а количество атомов водорода – y. Поскольку вещество имеет равное количество атомов углерода и водорода, то x = y.

Составим уравнение с учетом значений относительной атомной массы углерода и водорода, а также вычисленной относительной молекулярной массы бензола.

12 ⋅ x + 1 ⋅ y = 78.

x = y = 78 / 13 = 6.

Следовательно, в молекуле содержатся шесть атомов углерода и шесть атомов водорода.

6. Составление молекулярной формулы бензола С6Н6

2. Решение задачи о свойствах толуола

В результате взаимодействия 2,5 моль толуола с бромом образовалось 700 г трибромтолуола. Найдите практический выход реакции (%) от теоретически возможного. Ответ округлите до целого числа.

Ответ: 86 %.

Решение.

1. Запишем уравнение реакции.

С6Н5СН3 + 3Br2 →С6Н2СН3Br3 +3НBr
ТолуолТрибромтолуол

2. Рассчитаем молярную массу трибромтолуола.

М (С6Н2СН3Br3) = 329 г/моль

3. Рассчитаем теоретический выход (г) трибромтолуола.

2,5 мольх г
С6Н5СН3 + 3Br2 →С6Н2СН3Br3 +3НBr
1 моль1 моль · 329 г/моль

2,5 моль / 1 моль = х г / 1 моль · М (С6Н2СН3Br3)

х = 2,5 · 329 / 1 = 815 (г).

4. Рассчитаем теоретический выход (%) трибромтолуола.

Составляем пропорцию:

815 г составляет 100 %

700 г – х %.

Отсюда:

х = 700 · 100 / 815 = 85,88 ≈ 86 (%).

Источник: https://resh.edu.ru/subject/lesson/4775/conspect/

Арены (ароматические углеводороды)

Арены (ароматические углеводороды)

Арены (ароматические углеводороды) – это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: CnH2n–6 при n ≥ 6.

Строение, номенклатура и изомерия ароматических углеводородов

Способы получения ароматических углеводородов

Химические свойства ароматических углеводородов

Строение аренов

Рассмотрим подробно строение молекулы бензола. В ней присутствуют три двойные связи С=С, три одинарные связи С–C и шесть одинарных связей С–Н.

Структурная формула бензола:

Сокращенная структурная формула бензола:

Каждый из шести атомов углерода в молекуле бензола находится в состоянии sp2-гибридизации.

Каждый атом углерода в молекуле бензола связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы равны 1200:

Атомы углерода и водорода в молекуле бензола, соединенные σ-связями, образуют правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.  
Негибридные р-орбитали атомов углерода образуют единую циклическую (ароматическую) π-систему – единое электронное облако над и под плоскостью кольца.

Соответственно, на самом деле все связи между атомами углерода в молекуле бензола одинаковой длины (0,140 нм), что соответствует промежуточному значению между одинарной и двойной (полуторная связь)

Соответственно, в молекуле бензола между углеродными атомами нет обычных одинарных и двойных связей, а все они выравнены (делокализованы).

Поэтому структурную формулу бензола изображают в виде правильного шестиугольника и кружка внутри него, который обозначает делокализованные π-связи:

Гомологический ряд аренов

Простейший представитель гомологического ряда аренов — бензол:

Ближайший гомолог бензола – толуол (метилбензол):

Еще один представитель гомологического ряда бензола – этилбензол:

Изопропилбензол (кумол):

Номенклатура аренов

Первый представитель гомологического ряда аренов — бензол:

Ближайший гомолог бензола – толуол (метилбензол):

При составлении названия ароматического соединения за главную цепь принимают молекулу бензола. Если в ароматическом кольце несколько заместителей, то атомы углерода бензольного кольца нумеруются: в направлении, где больше заместителей, от самого главного заместителя (чем больше атомов углерода в радикале, тем он старше).

Например, 1,2-диметилбензол

Если в молекуле бензола присутствуют два заместителя, то также используют систему специальных приставок:

  • орто— (о-) если заместители расположены у соседних атомов углерода в бензольном кольце (1,2-положения);
  • мета— (м-) заместители расположены через один атом углерода (1,3-положения);
  • пара— (п-) заместители расположены на противоположных сторонах кольца (1,4-положения).
1,2-Диметилбензол1,3-Диметилбензол1,4-Диметилбензол
орто-Диметилбензолмета-Диметилбензолпара-Диметилбензол

Для названия многих производных бензола используют тривиальные названия:

Структурная формулаСистемное название Тривиальное название
МетилбензолТолуол
1,2-Диметилбензолорто-Ксилол
ИзопропилбензолКумол

Названия радикалов, содержащих ароматическое кольцо:

ФенилБензил

Изомерия аренов

Для  гомологов бензола характерна структурная изомерия .

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

  • Изомерия углеродного скелета в боковой цепи характерна для ароматических углеводородов, которые содержат три и более атомов углерода в боковой цепи.
Например.

Формуле С9Н12 соответствуют изомеру изопропилбензол и пропилбензол

ИзопропилбензолПропилбензол
  • Изомерия положения заместителей характерна для аренов, которые содержат два и более заместителей в бензольном кольце.
Например.

Формуле С9Н12 соответствуют изомеру изопропилбензол и пропилбензол

ИзопропилбензолПропилбензол

Химические свойства аренов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).
Из-за наличия сопряженной π-электронной системы молекулы ароматических углеводородов вступают в реакции присоединения очень тяжело, только в жестких условиях — на свету или при сильном нагревании, как правило, по радикальному механизму
Бензольное кольцо представляет из себя скопление π-электронов, которое притягивает электрофилы. Поэтому для ароматических углеводородов характерны реакции электрофильного замещения атома водорода у бензольного кольца.

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.). 

При гидрировании бензола образуется циклогексан:

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре, под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C), то происходит замещение атомов  водорода в боковом алкильном заместителе, а не в ароматическом кольце.

Например, при хлорировании толуола на свету образуется бензилхлорид
Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).
Например, этилбензол реагирует с хлором на свету

2.Реакции замещения

Реакции замещения у ароматических углеводородов протекают по ионному механизму (электрофильное замещение). При этом атом водорода замещается на другую группу (галоген, нитро, алкил и др.).

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl3, FeBr3).

При взаимодействии с хлором на катализаторе AlCl3 образуется хлорбензол:

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Гомологи бензола содержат алкильные заместители, которые обладают электронодонорным эффектом: из-за того, что электроотрицательность водорода меньше, чем углерода, электронная плотность связи С-Н смещена к углероду.

На нём возникает избыток электронной плотности, который далее передается на бензольное кольцо.

Поэтому гомологи бензола легче вступают в реакции замещения в бензольном кольце. При этом гомологи бензола вступают в реакции замещения преимущественно в орто— и пара-положения
Например, при взаимодействии толуола с хлором  образуется смесь продуктов, которая преимущественно состоит из орто-хлортолуола и пара-хлортолуола

Мета-хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300оС) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, при хлорировании этилбензола:

2.2. Нитрование

 Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Серная кислота способствует образованию электрофила NO2+:

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о-нитротолуол:

либо п-нитротолуол:

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.
Например, бензол реагирует с хлорэтаном с образованием этилбензола
  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.
Например, бензол реагирует с этиленом с образованием этилбензола
Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)
  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.
Например, бензол реагирует с этанолом с образованием этилбензола и воды

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C6H6 + 15O2  → 12CO2 + 6H2O + Q

Уравнение сгорания аренов в общем виде:

 CnH2n–6 + (3n – 3)/2 O2 → nCO2 + (n – 3)H2O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. Окисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.
Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ
Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

4.Ориентирующее действие заместителей в бензольном кольце

Если в бензольном кольце имеются заместители, не только алкильные, но и содержащие другие атомы (гидроксил, аминогруппа, нитрогруппа и т.п.), то реакции замещения атомов водорода в ароматической системе протекают строго определенным образом, в соответствии с характером влияния заместителя на ароматическую π-систему.

Заместители подразделяют на две группы в зависимости от их влияния на электронную плотность ароматической системы: электронодонорные (первого рода) и электроноакцепторные (второго рода).

Типы заместителей в бензольном кольце

Заместители первого родаЗаместители второго рода
Дальнейшее замещение происходит  преимущественно в орто— и пара-положениеДальнейшее замещение происходит преимущественно в мета-положение
Электронодонорные, повышают электронную плотность в бензольном кольцеЭлектроноакцепторные,  снижают электронную плотность в сопряженной системе.
  • алкильные заместители: СН3 –, С2Н5 – и др.;
  • гидроксил, амин: –ОН , –NН2;
  • галогены: –Cl, –Br
  • нитро-группа:– NO2, – SO3Н;
  • карбонил – СНО;
  • карбоксил: – СООН, нитрил: – С≡N;
  • – CF3 
Например, толуол реагирует с хлором в присутствии катализатора с образованием смеси продуктов, в которой преимущественно содержатся орто-хлортолуол и пара-хлортолуол. Метильный радикал — заместитель первого рода.

В уравнении реакции в качестве продукта записывается либо орто-толуол, либо пара-толуол.

Например, при бромировании нитробензола в присутствии катализатора  преимущественно образуется мета-хлортолуол. Нитро-группа — заместитель второго рода


5. Особенности свойств стирола

Стирол (винилбензол, фенилэтилен) – это производное бензола, которое имеет в своем составе двойную связь в боковом заместителе.

Общая формула гомологического ряда стирола: CnH2n-8.

Молекула стирола содержит заместитель с кратной связью у бензольного кольца, поэтому стирол проявляет все свойства, характерные для алкенов – вступает в реакции присоединения, окисления, полимеризации.

Стирол присоединяет водород, кислород, галогены, галогеноводороды и воду в соответствии с правилом Марковникова.

Например, при гидратации стирола образуется спирт:
Стирол присоединяет бром при обычных условиях, то есть обесцвечивает бромную воду

При полимеризации стирола образуется полистирол:

Как и алкены, стирол окисляется водным раствором перманганата калия при обычных условиях. Обесцвечивание водного раствора перманганата калия — качественная реакция на стирол:

При жестком окислении стирола перманганатом калия в кислой среде (серная кислота) разрывается двойная связь и образуется бензойная кислота и углекислый газ:

При окислении стирола перманганатом калия в нейтральной среде при нагревании также разрывается двойная связь и образуется соль бензойной кислоты и карбонат:

Получение аренов

Хлорбензол реагирует с хлорметаном и натрием. При этом образуется смесь продуктов, одним из которых является толуол:

2. Дегидроциклизация алканов

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

3. Дегидрирование циклоалканов

При дегидрировании циклогексана и его гомологов при нагревании в присутствии катализатора образуется бензол или соответствующие гомологи бензола.

Например, при нагревании циклогексана в присутствии палладия образуется бензол и водород
Например, при нагревании метилциклогексана в присутствии палладия образуется толуол и водород

4. Декарбоксилирование солей бензойной кислоты

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe)  соли органической кислоты.

Взаимодействие бензоата натрия с гидроксидом натрия в расплаве протекает аналогично реакции получения алканов по реакции Дюма с образованием бензола и карбоната натрия:

5. Алкилирование бензола и его гомологов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.
Например, бензол реагирует с хлорэтаном с образованием этилбензола
  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.
Например, бензол реагирует с этиленом с образованием этилбензола
Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)
  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.
Например, бензол реагирует с этанолом с образованием этилбензола и воды

6. Тримеризация ацетилена

При нагревании ацетилена под давлением над активированным углем молекулы ацетилена соединяются, образуя бензол. 

При тримеризации пропина образуется 1,3,5-триметилбензол.

7. Получение стирола

Стирол можно получить дегидрированием этилбензола:

Стирол можно также получить действием спиртового раствора щелочи на продукт галогенирования этилбензола (1-хлор-1-фенилэтан):

Источник: https://chemege.ru/areny/

Book for ucheba
Добавить комментарий