Бактерии

Бактерии — общая характеристика. Классификация, строение, питание и роль бактерий в природе

Бактерии

Бактерии это самый древний организм на земле, а также самый простой в своем строении. Он состоит всего из одной клетки, которую можно увидеть и изучить только под микроскопом. Характерным признаком бактерий является отсутствие ядра, вот почему бактерии относят к прокариотам.

Некоторые виды образовывают небольшие группы клеток, такие скопления могут быть окружены капсулой (чехлом). Размер, форма и цвет бактерии сильно зависит от окружающей среды.

По форме бактерии различаются на: палочковидные (бациллы), сферические (кокки) и извитые (спириллы). Встречаются и видоизмененные – кубические, С-образные, звездчатые. Их размеры колеблются от 1 до 10мкм. Отдельные виды бактерий могут активно передвигаться при помощи жгутиков. Последние иногда превышают размер самой бактерии в два раза.

Виды форм бактерий

Для движения бактерии используют жгутики, количество которых бывает различное – один, пара, пучок жгутиков. Расположение жгутиков также бывает разным – с одной стороны клетки, по бокам или равномерно распределены по всей плоскости.

Также одним из способов передвижения считается скольжение благодаря слизи, которой покрыт прокариот. У большинства внутри цитоплазмы есть вакуоли.

Регулировка ёмкости газа в вакуолях помогает им двигаться в жидкости вверх или вниз, а также перемещаться по воздушных каналах почвы.

Ученые открыли более 10 тысяч разновидностей бактерий, но по предположениям научных исследователей в мире существует их более миллиона видов. Общая характеристика бактерий дает возможность определиться с их ролью в биосфере, а также изучить строение, виды и классификацию царства бактерий.

Места обитания

Простота строения и быстрота адаптации к окружающим условиям помогла бактериям распространиться в широком диапазоне нашей планеты. Они существуют везде: вода, почва, воздух, живые организмы – всё это максимально приемлемое место обитания для прокариотов.

Бактерии находили как на южном полюсе, так и в гейзерах. Они есть на океанском дне, а также в верхних слоях воздушной оболочки Земли. Бактерии живут везде, но их количество зависит от благоприятных условий. К примеру, большая численность видов бактерий проживает в открытых водоемах, а также почве.

Особенности строения

Клетка бактерии отличается не только тем, что в ней нет ядра, но и отсутствием митохондрий и пластид. ДНК данного прокариота находится в специальной ядерной зоне и имеет вид замкнутого в кольцо нуклеоида.

У бактерии строение клетки состоит из клеточной стенки, капсулы, капсулоподобной оболочки, жгутиков, пили и цитоплазматичной мембраны.

Внутреннее строение оформляют цитоплазма, гранулы, мезосомы, рибосомы, плазмиды, включения и нуклеоид.

Клеточная стенка бактерии выполняет функцию обороны и опоры. Вещества могут свободно протекать сквозь неё, благодаря проницаемости. Данная оболочка имеет в своем составе пектин и гемицеллюлозу.

Некоторые бактерии выделяют особую слизь, которая может помочь защититься от пересыхания. Слизь формирует капсулу – полисахарид по химическому составу. В такой форме бактерия способна переносить даже очень большие температуры.

Также она выполняет и другие функции, к примеру слипание с любыми поверхностями.

На поверхности клетки бактерии находятся тонкие белковые ворсинки – пили. Их может быть большая численность. Пили помогают клетке передавать генетический материал, а также обеспечивают слипание с другими клетками.

Под плоскостью стенки находится трехслойная цитоплазматичная мембрана. Она гарантирует транспорт веществ, а также имеет немалую роль в образовании спор.

Цитоплазма бактерий на 75 процентов произведена из воды. Состав цитоплазмы:

  • Рыбосомы;
  • мезосомы;
  • аминокислоты;
  • ферменты;
  • пигменты;
  • сахар;
  • гранулы и включения;
  • нуклеоид.

Обмен веществ у прокариотов возможен, как с участием кислорода, так и без его него. Большая их часть питаются уже готовыми питательными веществами органического происхождения. Очень мало видов способны сами синтезировать органические вещества из неорганических. Это сине-зеленые бактерии и цианобактерии, которые отыграли немалую роль в формировании атмосферы и насыщении её кислородом.

Размножение

В условиях, благоприятных для размножения, оно осуществляется почкованием или вегетативно. Бесполое размножение происходит в такой последовательности:

  1. Клетка бактерии достигает максимального объема и содержит необходимый запас питательных веществ.
  2. Клетка удлиняется, посередине появляется перегородка.
  3. Внутри клетки происходит дележ нуклеотида.
  4. ДНК основная и отделенная расходятся.
  5. Клетка делится пополам.
  6. Остаточное формирование дочерних клеток.

При таком способе размножения нету обмена генетической информацией, поэтому все дочерние клетки будут точной копией материнской.

Процесс размножения бактерий в неблагоприятных условиях более интересен. О способности полового размножения бактерий ученые узнали сравнительно недавно – в 1946 году. У бактерий нет разделения на женские и половые клетки.

Но ДНК у них встречается разнополое. Две такие клетки при приближении друг к другу образовывают канал для передачи ДНК, происходит обмен участками – рекомбинация.

Процесс довольно длительный, результатом которого являются две совершенно новые особи.

Большинство бактерий очень сложно увидеть под микроскопом, так как они не имеют своей окраски.

Немногие разновидности имеют пурпурный или зеленый окрас, благодаря содержанию в них бактериохлорофилла и бактериопурпурина.

Хотя если рассматривать некоторые колонии бактерий, становится ясно, что они выделяют окрашиваемые вещества в среду обитания и приобретают яркую окраску. Для того, чтобы подробней изучать прокариотов, их окрашивают.

Фотографии бактерий под микроскопом

Классификация

Классификация бактерий может быть основана на таких показателях, как:

  • Форма
  • способ передвижения;
  • способ получения энергии;
  • продукты жизнедеятельности;
  • степень опасности.

По способу питания бывают бактерии автотрофы или гетеротрофы. Автотрофные бактерии пребывают в основном в почве. Гетеротрофы различают такие, как: симбионты, паразиты и сапрофиты.

Бактерии симбионты живут в содружестве с иными организмами.

Бактерии паразиты ничего не производят, поэтому питаются тем, что произвел организм хозяина, либо питается тканями другого организма.

Бактерии сапрофиты проживают на уже отмерших организмах, продуктах и органических отходах. Они способствуют процессам гниения и брожения.

Гниение очищает природу от трупов и других отходов органического происхождения. Без процесса гниения не было бы круговорота веществ в природе. Так в чем же состоит роль бактерий в круговороте веществ?

Бактерии гниения — это помощник в процессе расщепления белковых соединений, а также жиров и других соединений, содержащих в себе азот.

Проведя сложную химическую реакцию, они разрывают связи между молекулами органических организмов и захватывают молекулы белка, аминокислот.

Расщепляясь, молекулы высвобождают аммиак, сероводород и другие вредные вещества. Они ядовиты и могут вызывать отравление у людей и животных.

Бактерии гниения быстро размножаются в благоприятных для них условиях. Так как это не только полезные бактерии, но и вредные, то чтобы не допустить преждевременного гниения у продуктов, люди научились их обрабатывать: сушить, мариновать, солить, коптить. Все эти способы обработки убивают бактерии и не дают им размножаться.

Бактерии брожения при помощи ферментов способны расщеплять углеводы. Эту способность люди заметили еще в древние времена и используют такие бактерии для изготовления молочнокислых продуктов, уксусов, а также других продуктов питания до сих пор.

Кроме полезных, существуют также и патогенные бактерии. Их жизнедеятельность базируется на паразитизме в организме животных, растений и даже человека. Они вызывают серьезные инфекционные болезни, примером может служить туберкулез, сифилис, язву (сибирскую и язву желудка), дифтерию, чуму и многие другие не менее тяжелые заболевания.

Бактерии, трудясь в совокупности с другими организмами, делают очень важную химическую работу. Очень важно знать какие есть виды бактерий и какую пользу или вред приносят для природы.

Значение в природе и для человека

Выше уже отмечалось большое значение многих видов бактерий (при процессах гниения и различных типах брожения), т.е. выполнение санитарной роли на Земле.

Бактерии также играют огромную роль в круговороте углерода, кислорода, водорода, азота, фосфора, серы, кальция и других элементов.

Многие виды бактерий способствуют активной фиксации атмосферного азота и переводят его в органическую форму, способствуя повышению плодородия почв.

Особо важное значение имеют те бактерии, которые разлагают целлюлозу, являющиеся основным источником углерода для жизнедеятельности почвенных микроорганизмов.

Сульфатредуцирующие бактерии участвуют в образовании нефти и сероводорода в лечебных грязях, почвах и морях. Так, насыщенный сероводородом слой воды в Черном море является результатом жизнедеятельности сульфатредуцирующих бактерий.

Деятельность этих бактерий в почвах приводит к образованию соды и содового засоления почвы. Сульфатредуцирующие бактерии переводят питательные вещества в почвах рисовых плантаций в такую форму, которая становится доступной для корней этой культуры.

Эти бактерии могут вызывать коррозию металлических подземных и подводных сооружений.

Благодаря жизнедеятельности бактерий почва освобождается от многих продуктов и вредных организмов и насыщается ценными питательными веществами. Бактерицидные препараты успешно используются для борьбы с многими видами насекомых-вредителей (кукурузным мотыльком и др.).

Многие виды бактерий используются в различных отраслях промышленности для получения ацетона, этилового и бутилового спиртов, уксусной кислоты, ферментов, гормонов, витаминов, антибиотиков, белково-витаминных препаратов и т.д.

Без бактерий невозможны процессы при дублении кожи, сушке листьев табака, выработке шелка, каучука, обработке какао, кофе, мочении конопли, льна и других лубоволокнистых растений, квашении капусты, очистке сточных вод, выщелачивании металлов и т.д.

Оцените, пожалуйста, статью. Мы старались:) (16 4,88 из 5)
Загрузка…

Источник: https://animals-world.ru/bakterii-obshhaya-xarakteristika/

Бактерии

Бактерии

Михаил Октябрь 11, 2016 Бактерии Комментировать

Общая характеристика бактерий

К царству Бактерии относятся собственно бактерии и цианобактерии.

Бактерии — это мельчайшие одноклеточные прокариотические (безъядерные) организмы.

Размеры бактерий: обычно от 0,1 до 15 мкм, но иногда достигают 30—100 мкм.

Численность видов бактерий: около 3 млрд.

Распространенность бактерий: в почве (в 1 г до 2,5-3 млрд.), в воздухе (на высоте до 20 км), в воде (особенно в верхних слоях водоемов), в живых организмах (в форме мутуализма и паразитизма).

Морфологические типы бактерий (в зависимости от формы тела): кокки (сферические), бациллы (прямые палочковидные), спириллы (спиралевидные), вибрионы (в виде запятой), спирохеты (извитые), колониальные формы (диплококки, стрептококки, стафилококки) и др.

Подвижность: некоторые бактерии подвижны благодаря наличию жгутиков.

В обычном состоянии бактерии неустойчивы при высушивании и воздействии прямых солнечных лучей, повышении температуры до 65-80 °С, погибают от воздействия спирта и других дезинфицирующих веществ.

Строение бактерий

Бактериальная клетка не имеет оформленного ядра, покрыта оболочкой, состоящей из плазматической мембраны, клеточной стенки и (у многих видов бактерий) внешней слизистой капсулы.

Плазматическая мембрана полупроницаема и обеспечивает избирательное поступление веществ в клетку и выделение в окружающую среду продуктов обмена веществ. Она образует складчатые впячивания внутрь цитоплазмы (мезосомы).

На мембранах мезосом находятся различные окислительно-восстановительные ферменты, участвующие в дыхании, и (у фотосинтезирующих бактерий) пигменты, участвующие в фотосинтезе. Т.е.

мезосомы выполняют функции митохондрий (синтезируют АТФ), хлоропластов (осуществляют фотосинтез), комплекса Гольджи и эндоплазматической сети (накапливают и преобразуют органические вещества и осуществляют их транспорт внутри клетки и выведение за ее пределы).

Клеточная стенка — тонкая, прочная и эластичная, придает бактериальной клетке определенную форму, защищает ее содержимое от воздействия неблагоприятных факторов внешней среды и выполняет ряд других функций. Опорным каркасом клеточной стенки служит сетка из одного или несколько слоев муреина. В состав клеточной стенки бактерий не входят хитин и целлюлоза, характерные для клеток грибов и растений.

Слизистая капсула предохраняет клетку от высыхания и является ее защитным покровом, а также служит для образования колоний из отдельных клеток.

Генетический материал бактерий представлен нуклеоидом, не ограниченным мембранами и находящимся в центре клетки.

Нуклеоид (или бактериальная хромосома) — это зона, обычно находящаяся в центре бактериальной клетки, содержащая кольцевую молекулу ДНК и не ограниченная мембранами.

Молекула ДНК в нуклеоиде не связана с гистоновыми белками и прикрепляется к выросту цитоплазматической мембраны в одной точке.

Нуклеоид является носителем генетической информации и контролирует нормальный ход всех внутриклеточных процессов.

Молекула ДНК у бактерий имеет до 5 000 000 пар нуклеотидов; но суммарное содержание ДНК в одной бактериальной клетке значительно меньше, чем в ядерной (эукариотической).

Цитоплазма бактериальной клетки представляет собой смесь белков, жиров, углеводов, других органических соединений, минеральных веществ и воды и имеет зернистый вид. В ней содержится до 20 тысяч рибосом класса 70S (медленно осаждаемых), на которых синтезируются белки.

В цитоплазме бактерий также содержатся многочисленные включения — гранулы запасаемых веществ. У некоторых бактерий в цитоплазме имеются плазмиды — небольшие кольцевые молекулы ДНК, участвующие в обмене генетической информацией между различными бактериальными клетками.

В клетках бактерий отсутствуют митохондрии, лизосомы, комплекс Гольджи и другие органеллы, однако в них хорошо развиты мембранные структуры в виде канальцев, пузырьков и тила-коидов, часто содержащих ферменты и пигменты и являющихся аналогами многих органелл эукариотической клетки.

Жгутики — это органоиды движения бактерий, состоящие из собранных в спираль глобул особого белка — флагеллина. Они берут свое начало под цитоплазматической мембраной, закрепляясь там с помощью пары дисков.

Количество жгутиков у бактерии — от I до 50. У одних бактерий жгутики расположены только на одном конце клетки, у других — на двух или по всей поверхности.

Способ расположения жгутиков является характерным признаком при классификации подвижных бактерий.

У некоторых безжгутиковых водных и почвенных бактерий в цитоплазме имеются газовые вакуоли, позволяющих погружаться в толщу воды, подниматься на ее поверхность или передвигаться в капиллярах почвы.

Классификация бактерий

❖ Классификация бактерий по типу питания (ассимиляции):■ автотрофные,

■ гетеротрофные.

Автотрофные бактерии сами синтезируют нужные им органические вещества из неорганических.

■ В зависимости от способа получения энергии, необходимой для этого синтеза, автотрофные бактерии подразделяются на фотосинтезирующие и хемосинтезирующие. Фотосинтезирующие бактерии (например, зеленые и пурпурные) осуществляют фотосинтез органических веществ, используя световую (солнечную) энергию.

В клетках фотосинтезирующих бактерий (в отличие от клеток растений) нет пластид, а фотосинтезирующие пигменты (бактерио-хлорофиллы) находятся в тилакоидах, образующихся в результате выпячивания цитоплазматической мембраны. По своей структуре бактериохлорофиллы подобны хлорофиллам растений и отличаются от них природой белковых цепей.

Хемосинтезирующие бактерии получают нужную для синтеза энергию от экзотермических реакций окисления неорганических веществ (молекулярного водорода, сероводорода, аммиака, закиси железа и др.). ‘

❖ Гетеротрофные бактерии (их большинство) используют в пищу готовые органические вещества, которые служат этим бактериям источником энергии и атомов углерода.

■ В зависимости от источника пищи гетеротрофные бактерии подразделяются на сапротрофы и симбионты.

Сапротрофы извлекают органические вещества из разлагающихся мертвых остатков организмов (бактерии гниения, получающие энергию от расщепления азотсодержащих соединений), выделений живых организмов (бактерии брожения, получающие энергию от расщепления углеродсодержащих соединений).

Симбионты поглощают органические вещества тела хозяина (растения, животного или человека), в котором они живут. При этом симбионты или:

■ продуцируют вещества, необходимые организму хозяина (пример: клубеньковые азотфиксирующие бактерии, поселяющиеся на корнях бобовых растений и находящиеся с ними во взаимовыгодном сосуществовании), или

■ наносят вред организму хозяина, вызывая в нем болезни (бактерии-паразиты).

❖ Классификация бактерий по типу диссимиляции (потребности в кислороде для высвобождения энергии, запасенной в молекулярных связях):■ аэробные,■ анаэробные,

■ факультативные.

Аэробные бактерии (туберкулезная палочка, гнилостные бактерии) живут только в кислородной среде (в верхних слоях почвы, в воздухе) и получают энергию путем окисления органических соединений до воды и диоксида углерода.

Анаэробные бактерии (бактерии желудочно-кишечного тракта, столбнячная палочка, возбудители гангрены, палочка ботулизма и др.) обитают в бескислородных средах и получают энергию в процессе реакций гликолиза и брожения.

Факультативные бактерии могут обитать как в кислородных, так и в бескислородных средах (пример: молочнокислая бактерия).

Размножение бактерий

Тип размножения бактерий — бесполый. Бактериальная клетка начинает размножаться, попав в благоприятные условия и достигнув определенного размера.

❖ Формы (способы) размножения бактерий:■ делением клетки надвое,■ почкованием (встречается как исключение),

■ спорообразованием.

Размножение делением клетки надвое: сначала путем репликации ДНК удваивается генетический материал клетки.

После этого белки, прикрепляющие молекулы ДНК к выростам цитоплазматической мембраны, разделяют (растаскивают) дочерние молекулы ДНК и происходит оформление обособленных бактериальных хромосом (нуклеоидов).

Затем клетка удлиняется, и в ней постепенно образуется поперечная перегородка. Наконец, две дочерние клетки расходятся. Деления клеток происходят примерно через каждые 15—20 минут.

Спорообразование свойственно некоторым бактериям при наступлении неблагоприятных условий. При этом в бактериальной клетке значительно уменьшается количество свободной воды, снижается ферментативная активность, цитоплазма сжимается, а клетка покрывается очень плотной оболочкой.

Споры бактерий устойчивы к различным воздействиям (выдерживают длительное высыхание, нагревание свыше 100 °С и охлаждение примерно до -200 °С) и сохраняют жизнеспособность в течение длительного времени.

При попадании в благоприятные условия споры набухают и прорастают, образуя новую вегетативную клетку бактерий.

♦ Виды спор бактерий:
микроцисты (образуются из целой клетки),
эндогенные (образуются внутри клетки).

Циста — временная форма существования многих одноклеточных и ряда простейших многоклеточных организмов, характеризующаяся наличием защитной оболочки. Позволяет перенести неблагоприятные условия или предохраняет клетку в период ее деления.

❖ Формы полового процесса у бактерий:■ трансформация,■ конъюгация,

■ трансдукция.

Трансформация осуществляется при попадании фрагментов ДНК разрушенных клеток одной культуры бактерий в живую культуру другой бактерии. Эти фрагменты ДНК могут поглощаться клеткой-реципиентом и встраиваться в ее нуклеоид.

При конъюгации перенос участка ДНК от донора (выполняющего мужские функции) к клетке-реципиенту осуществляется при непосредственном контакте через половую фимбрию (тонкую белковую трубочку), которая формируется у клетки-донора. После этого клетки разъединяются. При конъюгации очень часто наблюдается передача не всей молекулы ДНК, а только ее фрагментов.

При трансдукции небольшой фрагмент ДНК переносится от одной клетки к другой бактериофагами.

Значение бактерий

❖ Положительное значение:■ они участвуют в круговороте веществ и являются конечным звеном всех цепей питания;■ являются редуцентами в биогеоценозе (разлагают и минерализуют экскременты и органические остатки);■ участвуют в процессе почвообразования;■ служат источником азота для бобовых растений;■ принимают участие в образовании торфа, каменного угля, железной руды, других полезных ископаемых;■ участвуют в биохимических процессах пищеварения животных и человека;■ применяются в пищевой промышленности (для консервирования, получения молочнокислых продуктов и т.д.);■ используются в микробиологической и химической промышленности (для получения спиртов, ацетона, сахаров, органических кислот и других химических соединений),■ используются в фармацевтической промышленности для получения антибиотиков, вакцин, витаминов, аминокислот, ферментов и других биологически активных веществ;■ применяются в процессах обработки льна, дубления кож и т.д.;■ являются удобным объектом для генной инженерии;

■ применяются для борьбы с вредителями сельского хозяйства.

❖ Отрицательное значение:■ многие виды бактерий (болезнетворные, или патогенные, бактерии) паразитируют на растениях, животных и человеке, вызывая их инфекционные заболевания;

■ сапротрофные бактерии гниения и брожения вызывают гниение и порчу продуктов питания.

Некоторые инфекционные заболевания человека

Дифтерия вызывается дифтерийной палочкой, поражающей верхние дыхательные пути. Токсин, выделяемый этими бактериями, разносится кровью и воздействует на сердце. Способ борьбы — прививка неактивным токсином.

Тиф: возбудитель — бактерии риккетсии, их переносчик -вши. При заболевании поражаются стенки кровеносных сосудов и образуются тромбы. Возможна прививка с помощью убитых бактерий, а также лечение антибиотиками тетрациклинового ряда.

Туберкулез: возбудитель — туберкулезная палочка, поражающая легкие и кости. Заражение происходит воздушно-капельным путем, а также через молоко больных животных. Профилактика -вакцинацией; лечение производится специальными препаратами.

Сифилис: возбудитель — спирохета рода трепонема. Сначала поражаются половые органы, затем глаза, кости, суставы, кожа, центральная нервная система. Передается при половом контакте. Лечение — антибиотиками и специальными препаратами.

Холера вызывается холерным вибрионом, в результате жизнедеятельности которого выделяется токсин, поражающий слизистую кишечника. Заражение происходит при употреблении в пищу грязных продуктов питания и воды. Для лечения применяются антибиотики тетрациклинового ряда.

Токсины — ядовитые продукты жизнедеятельности бактерий, которые, как правило, или сами являются поражающими факторами, или угнетают защитные силы организма, усиливая патогенное действие возбудителей болезни.

Методы борьбы с бактериями

❖ Методы борьбы с гнилостными бактериями:■ высушивание плодов, грибов, мяса, рыбы, зерна;■ охлаждение и замораживание продуктов;■ маринование продуктов в уксусной кислоте;■ создание высокой концентрации сахара (например, при изготовлении варенья), что вызывает плазмолиз в клетках бактерий и нарушает их жизнедеятельность;

■ консервирование (засолка).

❖ Другие методы борьбы с бактериями, в том числе болезнетворными:

дезинфекция (обеззараживание) — уничтожение болезнетворных микроорганизмов специальными химическими веществами (хлорной известью, хлорамином, раствором йода, этиловым спиртом и др.);

пастеризация — уничтожение бактерий в пищевых продуктах нагреванием до температуры 65-70 °С в течение 15-30 мин;

стерилизация — уничтожение бактерий с помощью ультрафиолетового излучения, химикатов или кипячения в автоклавах при температуре 120-130 °С и повышенном давлении;

■ соблюдение гигиены;

■ профилактические прививки.

Цианобактерии

Цианобактерии (или сине-зеленые водоросли) — группа микроскопических фототрофных одноклеточных, колониальных и многоклеточных (нитчатых) прокариотических организмов.

■ Цианобактерии осуществляют обычный двухфазный (со световой и темновой фазами) кислородный фотосинтез.

Распространение: в пресных и соленых водоемах (входят в состав планктона и бентоса), на поверхности почвы, на скалах; могут вступать в симбиоз с грибами (образуя лишайники), протистами, водорослями, мхами.

Планктон — совокупность организмов (бактерий, микроскопических водорослей, животных и их личинок), населяющих толщу воды и пассивно переносимых течением.

Бентос — совокупность организмов, обитающих в грунте и на поверхности дна водоема.

Строение — сходное с бактериями: клетки безъядерные, имеют толстые многослойные стенки, состоящие из полисахаридов, пектиновых веществ и целлюлозы; часто покрыты слизистым чехлом.

В цитоплазме расположены мембранные фотосинтезирующие структуры и пигменты, хлорофиллы, каротиноиды, фикоэритрин и др.

(благодаря их разнообразию цианобактерии могут поглощать свет различных длин волн), а также нуклеоид, рибосомы, включения запасного вещества —гликогена, а также (у некоторых видов) газовые вакуоли, наполненные азотом и регулирующие плавучесть клетки. У ряда нитчатых форм цианобактерий имеются специализированные клетки с сильно утолщенными бесцветными оболочками — гетероцисты, участвующие в фиксации азота и размножении.

Размножение: бесполое, делением клетки надвое; колониальные и нитчатые цианобактерии — распадом колоний или нитей.

♦ Значение бактерий:■ обогащают воду кислородом, а почву — органикой и азотом;■ очищают воду, минерализуя продукты гниения;■ являются кормом для зоопланктона и рыб;

■ используются для получения ряда ценных веществ (аминокислот, пигментов, витамина В12 и др.), вырабатываемых ими в процессе жизнедеятельности;

■ отдельные виды (спирулина, носток) используются в пищу;

■ (отрицательное) вызывают «цветение» воды в период массового размножения, обычно сопровождающегося гибелью (из-за недостатка пищи) и гниением большинства дочерних особей, что делает воду непригодной для питья и вызывает гибель рыбы.

бактерии

Источник: https://esculappro.ru/bakterii.html

Строение бактериальной клетки

У клеток многих бактерий имеется слизистая капсула. Она выполняет защитную функцию. В частности, защищает клетку от высыхания.

Как и у клеток растений, у бактериальных клеток есть клеточная стенка. Однако, в отличие от растений, ее строение и химический состав несколько иной. Клеточная стенка состоит из слоев сложного углевода. Ее строение таково, что позволяет проникать различным веществам внутрь клетки.

Под клеточной стенкой находится цитоплазматическая мембрана.

Бактерии относятся к прокариотам, так как в их клетках нет оформленного ядра. Они не имеют и хромосом, характерных для клеток эукариот. В состав хромосомы входит не только ДНК, но и белок.

У бактерий же их хромосома состоит только из ДНК и представляет собой кольцевую молекулу. Такой генетический аппарат бактерий называется нуклеоид.

Нуклеоид находится прямо в цитоплазме, обычно в центре клетки.

У бактерий нет настоящих митохондрий и ряда других клеточных органелл (комплекса Гольджи, эндоплазматической сети). Их функции выполняют впячивания клеточной цитоплазматической мембраны. Такие впячивания называются мезосомами.

В цитоплазме есть рибосомы, а также различные органические включения: белки, углеводы (гликоген), жиры. Также клетки бактерий могут содержать различные пигменты. В зависимости от наличия тех или иных пигментов или их отсутствия, бактерии могут быть бесцветными, зелеными, пурпурными.

Бактерии возникли на заре формирования жизни на Земле. Именно они «открыли» различные способы питания. Лишь потом, с усложнением организмов, четко выделились два крупных царства: Растения и Животные. Они отличаются между собой в первую очередь по способу питания. Растения являются автотрофами, а животные — гетеротрофами. У бактерий же встречаются оба типа питания.

Питание — это способ получения клеткой или организмом необходимых органических веществ. Их можно получить из вне или синтезировать самостоятельно из неорганических веществ.

Автотрофные бактерии

Автотрофные бактерии синтезируют органические вещества из неорганических. Процесс синтеза требует энергии. В зависимости от того, откуда автотрофные бактерии получают эту энергию их делят на фотосинтезирующие и хемосинтезирующие.

Фотосинтезирующие бактерии используют энергию Солнца, улавливая его излучение. В этом они сходны с растениями. Однако, если у растений в процессе фотосинтеза выделяется кислород, то у большинства фотосинтезирующих бактерий он не выделяется.

То есть бактериальный фотосинтез анаэробен. Также зеленый пигмент бактерий отличается от аналогичного пигмента растений и называется бактериохлорофиллом. У бактерий нет хлоропластов. В основном фотосинтезирующие бактерии обитают в водоемах (пресных и соленых).

Хемосинтезирующие бактерии для синтеза органических веществ из неорганических используют энергию различных химических реакций. Энергия выделяется не во всех реакциях, а только в экзотермических.

Некоторые такие реакции протекают в бактериальных клетках. Так в нитрифицирующих бактериях протекает реакция окисления аммиака в нитриты и нитраты. Железобактерии окисляют закисное железо в окисное.

Водородные бактерии окисляют молекулы водорода.

Гетеротрофные бактерии

Гетеротрофные бактерии не способны синтезировать органические вещества из неорганических. Поэтому вынуждены получать их из окружающей среды.

Бактерии, питающиеся органическими остатками других организмов (в том числе мертвыми телами), называются бактериями-сапрофитами. По-другому их называют бактериями гниения.

Таких бактерий много в почве, где они разлагают перегной до неорганических веществ, которые впоследствии используются растениями. Молочнокислые бактерии питаются сахарами, превращая их в молочную кислоту.

Маслянокислые бактерии разлагают органические кислоты, углеводы, спирты до масляной кислоты.

Клубеньковые бактерии живут в корнях растений и питаются за счет органических веществ живого растения. Однако они связывают азот из воздуха и обеспечивают им растение. То есть в данном случае имеет место симбиоз. Другие гетеротрофные бактерии-симбионты обитают в пищеварительном аппарате животных, помогая переваривать пищу.

Существует много бактерий-паразитов. Такие бактерии живут в других живых организмах, питаются за их счет и наносят вред организму-хозяину.

Дыхание бактерий

В процессе дыхания происходит разрушение органических веществ с высвобождением энергии. Эта энергия в последствии тратится на различные процессы жизнедеятельности (например, на движение).

Эффективным способом получения энергии является кислородное дыхание. Однако некоторые бактерии могут получать энергию без кислорода. Таким образом, существуют аэробные и анаэробные бактерии.

Аэробным бактериям необходим кислород, поэтому они обитают в местах, где он есть. Кислород участвует в реакции окисления органических веществ до углекислого газа и воды. В процессе такого дыхания бактерии получают относительно большое количество энергии. Такой способ дыхания характерен для подавляющего числа организмов.

Анаэробные бактерии не нуждаются в кислороде для дыхания, поэтому могут обитать в бескислородной среде. Энергию они получают за счет реакции брожения. Данный способ окисления малоэффективен.

Споры бактерий

Подавляющее большинство бактерий в неблагоприятных условиях образуют споры. Споры бактерий — это в основном способ переживания неблагоприятных условий и способ расселения, а не способ размножения.

При образовании споры цитоплазма бактериальной клетки сжимается, а сама клетка покрывается плотной толстой защитной оболочкой.

Споры бактерий сохраняют жизнеспособность в течении длительного времени и способны переживать очень неблагоприятные условия (крайне высокие и низкие температуры, высыхание).

Когда спора попадает в благоприятные условия, то происходит ее набухание. После этого защитная оболочка сбрасывается, и появляется обычная бактериальная клетка. Бывает, что при этом происходит деление клетки, и образуется несколько бактерий. То есть спорообразование сочетается с размножением.

Происхождение, эволюция, место в развитии жизни на Земле

Бактерии наряду с археями были одними из первых живых организмов на Земле, появившись около 3,9—3,5 млрд лет назад. Эволюционные взаимоотношения между этими группами ещё до конца не изучены, есть как минимум три основные гипотезы[6]: Н.

Пэйс предполагает наличие у них общего предка протобактерии, Заварзин считает архей тупиковой ветвью эволюции эубактерий, освоившей экстремальные местообитания; наконец, по третьей гипотезе археи — первые живые организмы, от которых произошли бактерии.

Эукариоты возникли в результате симбиогенеза из бактериальных клеток намного позже: около 1,9—1,3 млрд лет назад.

Для эволюции бактерий характерен ярко выраженный физиолого-биохимический уклон: при относительной бедности жизненных форм и примитивном строении, они освоили практически все известные сейчас биохимические процессы. Прокариотная биосфера имела уже все существующие сейчас пути трансформации вещества.

Эукариоты, внедрившись в неё, изменили лишь количественные аспекты их функционирования, но не качественные, на многих этапах циклов элементов бактерии по-прежнему сохраняют монопольное положение.

Одними из древнейших бактерий являются цианобактерии.

В породах, образованных 3,5 млрд лет назад, обнаружены продукты их жизнедеятельности — строматолиты, бесспорные свидетельства существования цианобактерий относятся ко времени 2,2—2,0 млрд лет назад.

Благодаря ним в атмосфере начал накапливаться кислород, который 2 млрд лет назад достиг концентраций, достаточных для начала аэробного дыхания. К этому времени относятся образования, свойственные облигатно аэробной Metallogenium.

Появление кислорода в атмосфере нанесло серьёзный удар по анаэробным бактериям. Они либо вымирают, либо уходят в локально сохранившиеся бескислородные зоны. Общее видовое разнообразие бактерий в это время сокращается.

Предполагается, что из-за отсутствия полового процесса, эволюция бактерий идёт по совершенно иному механизму, нежели у эукариот[6].

Постоянный горизонтальный перенос генов приводит к неоднозначностям в картине эволюционных связей, эволюция протекает крайне медленно (а, возможно, с появлением эукариот и вовсе прекратилась), зато в изменяющихся условиях происходит быстрое перераспределение генов между клетками при неизменном общем генетическом пуле.

Строение

Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны. По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже — звёздчатыми, тетраэдрическими, кубическими, C- или O-образными.

Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы, то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три:

  • нуклеоид
  • рибосомы
  • цитоплазматическая мембрана (ЦПМ)

С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки).

ЦПМ и цитоплазму объединяют вместе в понятие протопласт.

Строение протопласта

ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК, белков, продуктов и субстратов метаболических реакций, названа цитозолем. Другая часть цитоплазмы представлена различными структурными элементами.

Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ.

Однако у разных групп прокариот (особенно часто у грамположительных бактерий) имеются локальные впячивания ЦПМ — мезосомы, выполняющие в клетке разнообразные функции и разделяющие её на функционально различные части. У многих фотосинтезирующих бактерий существует развитая сеть производных от ЦПМ фотосинтетических мембран.

У пурпурных бактерий они сохранили связь с ЦПМ, легко обнаруживаемую на срезах под электронным микроскопом, у цианобактерий эта связь либо трудно обнаруживается, либо утрачена в процессе эволюции. В зависимости от условий и возраста культуры фотосинтетические мембраны образуют различные структуры — везикулы, хроматофоры, тилакоиды.

Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК (бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia).

Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид. ДНК в развёрнутом состоянии имеет длину более 1 мм.

Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны, хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).

Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.

Клеточная оболочка и поверхностные структуры

Клеточная стенка — важный структурный элемент бактериальной клетки, однако необязательный.

Искусственным путём были получены формы с частично или полностью отсутствующей клеточной стенкой (L-формы), которые могли существовать в благоприятных условиях, однако иногда утрачивали способность к делению.

Известна также группа природных не содержащих клеточной стенки бактерий — микоплазм.

У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.

Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20—80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов, белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1—6 нм, которые делают её проницаемой для ряда молекул.

У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2—3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим, и заполненное раствором, включающим в себя транспортные белки и ферменты.

С внешней стороны от клеточной стенки может находиться капсула — аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.

Бактериальных жгутиков может быть от 0 до 1000.

Возможны как варианты расположения одного жгутика у одного полюса (монополярный монотрих), пучка жгутиков у одного (монополярный перитрих или лофотрихиальное жгутикование) или двух полюсов (биполярный перитрих или амфитрихиальное жгутикование), так и многочисленные жгутики по всей поверхности клетки (перитрих). Толщина жгутика составляет 10—20 нм, длина — 3—15 мкм. Его вращение осуществляется против часовой стрелки с частотой 40—60 об/с.

Помимо жгутиков, среди поверхностных структур бактерий необходимо назвать ворсинки.

Они тоньше жгутиков (диаметр 5—10 нм, длина до 2 мкм) и необходимы для прикрепления бактерии к субстрату, принимают участие в транспорте метаболитов, а особые ворсинки — F-пили —нитевидные образования, более тонкие и короткие (3—10 нм х 0, 3—10 мкм), чем жгутики — необходимы клетке-донору для передачи реципиенту ДНК при конъюгации.

Размеры

Размеры бактерий в среднем составляют 0,5—5 мкм. Escherichia coli, например, имеет размеры 0,3—1 на 1—6 мкм, Staphylococcus aureus — диаметр 0,5—1 мкм, Bacillus subtilis 0,75 на 2—3 мкм. Крупнейшей из известных бактерий является Thiomargarita namibiensis, достигающая размера в 750 мкм (0,75 мм).

Второй является Epulopiscium fishelsoni имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus. Achromatium oxaliferum достигает размеров 33 на 100 мкм, Beggiatoa alba — 10 на 50 мкм. Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм.

В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1—0,25 мкм, что соответствует размеру крупных вирусов, например, табачной мозаики, коровьей оспы или гриппа.

По теоретическим подсчётам сферическая клетка диаметром менее 0,15—0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не помещаются все необходимые биополимеры и структуры в достаточном количестве.

Однако были описаны нанобактерии, имеющие размеры меньше «допустимых» и сильно отличающиеся от обычных бактерий. Они, в отличие от вирусов, способны к самостоятельному росту и размножению (чрезвычайно медленным). Они пока мало изучены, живая их природа ставится под сомнение.

При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём — пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой.

Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных.

Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.

Многоклеточность у бактерий

Одноклеточные формы способны осуществлять все функции, присущие организму, независимо от соседних клеток. Многие одноклеточные прокариоты склонны к образованию клеточных агрегатов, часто скреплённых выделяемой ими слизью.

Чаще всего это лишь случайное объединение отдельных организмов, но в ряде случаев временное объединение связано с осуществлением определённой функции, например, формирование плодовых тел миксобактериями делает возможным развитие цист, при том что единичные клетки не способны их образовывать.

Подобные явления наряду с образованием одноклеточными эубактериями морфологически и функционально дифференцированных клеток — необходимые предпосылки для возникновения у них истинной многоклеточности.

Многоклеточный организм должен отвечать следующим условиям:

  • его клетки должны быть агрегированы,
  • между клетками должно осуществляться разделение функций,
  • между агрегированными клетками должны устанавливаться устойчивые специфические контакты.

Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов. У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток — микроплазмодесмы.

Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты. Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.

Схема проезда

Источник: http://www.xiron.ru/content/view/22790/28/

Энергетический обмен бактерий

Бактерии получают энергию за счет окисления веществ. Существуют аэробные бактерии, живущие в воздушной среде, и анаэробные бактерии, которые могут жить только в условиях отсутствия кислорода.

К аэробным бактериям относят многочисленных редуцентов, которые разлагают органические вещества мертвых растений и животных. Анаэробные бактерии составляют микрофлору нашего кишечника – бескислородную среду обитания.

Получают энергию бактерии путем хемо- или фотосинтеза. Среди хемосинтезирующих бактерий можно встретить нитрифицирующие бактерии, железобактерии, серобактерии.

Важно заметить, что клубеньковые бактерии (азотфиксирующие) не осуществляют хемосинтез: клубеньковые бактерии относятся к гетеротрофам.

Среди фотосинтезирующих бактерий особое место принадлежит цианобактериями (сине-зеленым водорослям). Благодаря им сотни миллионов лет назад возник кислород, а с ним и озоновый слой: появилась жизнь на поверхность земли и аэробный тип дыхания (поглощение кислорода), которым мы сейчас с вами пользуемся 🙂

Что касается бактерий гетеротрофов, то их способ питания основан на разложении останков животных и растений – сапротрофы (редуценты), либо же они питаются органами и тканями животных и растений – паразиты.

Биотехнология

Бактерии широко применяются в направлении биотехнологии – генной инженерии. Их используют для получения различных химических веществ (белков).

В ДНК бактерии вставляют нужный ген (к примеру, ген, кодирующий белковый гормон – инсулин), бактерия принимает новый участок гена за свой собственный, в результате чего начинает синтезировать белок с данного участка. На рибосомах подобных бактерий синтезируется инсулин, который человек собирает, обрабатывает и использует как лекарство.

Бактерии используются для получения антибиотиков (тетрациклина, стрептомицина, грамицидина), широко применяемых в медицине. Бактерии также применяют в пищевой промышленности, где их используют для получения молочнокислых продуктов, алкогольных напитков.

Классификация бактерий по форме

При микроскопии становятся заметны явные отличия форм бактерий.

По форме бактериальные клетки подразделяются на:

  • Стафилококки – их скопления похожи на виноградные грозди
  • Диплококки – округлой формы, расположенные попарно
  • Стрептококки – объединяются в цепочки, напоминающие нити жемчуга
  • Палочки
  • Вибрионы – изогнутые в виде запятой
  • Спириллы – спирально извитые палочки
  • Спирохеты – сильно извитые (до 10-15 витков) палочки

Бактериальные инфекции

Многие патогенные бактерии приводят к развитию тяжелых заболеваний у человека. На настоящий момент при бактериальных инфекциях применяются антибиотики, дающие хороший эффект.

От некоторых болезней: дифтерия, коклюш и т.д. разработаны вакцины, дающие стойкий пожизненный иммунитет. После вакцинации образуются антитела к возбудителю, вследствие чего организм становится защищен от подобных инфекций: при встрече с возбудителем человек не заболевает, или переносит болезнь в легкой форме.

К бактериальным инфекциям относятся: чума, дифтерия, туберкулез, коклюш, гонорея, сифилис, тиф, столбняк, брюшной тиф, сальмонеллез, дизентерия, холера. Ниже вы можете видеть возбудителей данных заболеваний и место их локализации в организме.

Для борьбы с бактериями, вирусами и грибами в медицинских учреждениях (уже часто и в домашних условиях) используется кварцевание. Кварцевание – процесс обеззараживания помещения, суть которого в лампе, испускающей ультрафиолетовое излучение, губительное для микроорганизмов.

При проведении медицинских процедур локального кварцевания (облучения УФ отдельных участков) тела следует одевать защитные очки для избежания ожога сетчатки глаза. При кварцевании помещений следует покинуть их по той же причине.

Источник: https://studarium.ru/article/140

Book for ucheba
Добавить комментарий