Диффузионное и кинетическое горение

Диффузионное и кинетическое горение

Диффузионное и кинетическое горение

Все горючие (сгораемые) вещества содержат углерод и водород, — основные компоненты газовоздушной смеси, участвующие в реакции го­рения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.

Физико-химические основы горения заключаются в термическом раз­ложении вещества или материала до углеводородных паров и газов, кото­рые под воздействием высоких температур вступают в химическое воздейст­вие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

Воспламенение представляет собой процесс распространение пламе­ни по газопаровоздушной смеси.

При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламени по ним наблюдается устойчивое пламенное горение.

Если же скорость пламени больше скорости истечения паров и газов, то происходит выгорание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка.

B зависимости от скорости истечения газов и скорости распространения пламени по ним можно наблюдать:

  • горение на поверхности материала, когда скорость выделения горючей смеси с поверхности материала равна скорости распространения огня по ней;
  • горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.

Горение газопаровоздушной смеси подразделяется на диффузионное или кинетическое. Основным отличием является содержание или отсутствие окислителя (кислорода воздуха) непосредственно в горючей паровоздушной смеси.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожарах этот вид горения встречается крайне редко. Однако он часто встречается в технологических процессах: в газовой сварке, резке и т.п.

При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющее-I в процессе горения тепло, создает давление.

Основная реакция горения окисления) происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окислителя вглубь пламени (вытесняют воздух).

Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, пред­ает собой продукты неполного горения (СО, СН4, углерод и пр.).

Диффузионное горение, в свою очередь, бывает ламинарным (спо­рным) и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения горючей смеси с поверхности материала и скорости распространения пла­вни по ней.

Турбулентное горение наступает, когда скорость выхода горючей смеси значительно превышает скорость распространения пламени. Вэтом случае граница пламени становится неустойчивой вследствие боль­шой диффузии воздуха в зону горения. Неустойчивость вначале возникает вершины пламени, а затем перемещается к основанию.

Такое горение встречается на пожарах при объемном его развитии (см. ниже).

Горение веществ и материалов возможно только при определенном качестве кислорода в воздухе. кислорода, при котором исключается возможность горения различных веществ и материалов, устанавливается опытным путем. Так, для картона и хлопка самозатухание наступает Ори 14% (об.) кислорода, а полиэфирной ваты — при 16% (об.) [103].

Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора долж­но осуществляться в плотно закрытой таре.

1.2.2.Источники зажигания.

Необходимым условием воспламенения горючей смеси являются источники зажигания.

Источники зажигания подразделяются на откры­тый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электриче­ства и молнии, энергию процессов саморазогревания веществ и материа­лов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.

Характерные параметры источников зажигания принимаются по [21]:

Температура канала молнии — 30000°С при силе тока 200000 А и времени действия около 100 мкс.

Энергия искрового разряда вторичного воздействия мол­нии превышает 250 мДж и достаточна для воспламенения горючих материалов с минимальной энергией зажигания до 0,25 Дж.

Энергия искровых разрядов при зано­се высокого потенциала в здание по металлическим коммуникациям достигает зна­чений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.

Поливинилхлоридная изоляция электрического кабеля (провода) воспла­меняется при кратности тока короткого замыкания более 2,5.

Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуга при сварке и резке достигает 4000°С.

Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятность попадания 6%) м; при расположении провода на высоте 3 м — от 4 (96%) до 8 м (1%); при расположении на высоте 1 м — от 3 (99%) до 6 м (6%).

Максимальная температура, °С, на колбе электрической лампочки нака­ливания зависит от мощности, Вт: 25 Вт — 100°С; 40 Вт — 150°С; 75 Вт — 250°С; 100 Вт – 300°С; 150 Вт – 340°С; 200 Вт – 320°С; 750 Вт – 370°С.

Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.

Температура пламени (тления) и время горения (тления), “С (мин), неко­торых малокалорийных источников тепла: тлеющая папироса — 320-410 (2-2,5); тлеющая сигарета — 420-460 (26-30); горящая спичка — 620-640 (0,33).

Для искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм — 800°С, диаметром 5 мм — 600°С.

1.2.3. Самовозгорание

Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.

Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.

Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Тем­пература самонагревания вещества или материала является показателем его пожароопасное™.

Для большинства горючих материалов этот показа­тель лежит в пределах от 80 до 150°С [102]: бумага — 100°С; войлок строи­тельный — 80°С; дерматин — 40°С; древесина: сосновая — 80, дубовая — 100, еловая — 120°С; хлопок-сырец — 60°С.

Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Дан­ные процессы обнаруживаются по длительному и устойчивому запаху тлею­щего материала.

Химическое самовозгорание сразу проявляется в пламенном горе­нии. Для органических веществ данный вид самовозгорания происходит при контакте с кислотами (азотной, серной), растительными и техниче­скими маслами.

Масла и жиры, в свою очередь, способны к самовозгора­нию в среде кислорода. Неорганические вещества способны самовозго­раться при контакте с водой (например, гидросульфит натрия). Спирты самовозгораются при контакте с перманганатом калия.

Аммиачная селит­ра самовозгорается при контакте с суперфосфатом и пр.

Микробиологическое самовозгорание связано с выделением тепло­вой энергии микроорганизмами в процессе жизнедеятельности в питатель­ной для них среде (сено, торф, древесные опилки и т.п.).

На практике чаще всего проявляются комбинированные процессы самовозгорания: тепловые и химические.

2. Показатели пожаровзрывоопасности.

Изучение пожаровзрывоопасных свойств веществ и материалов, обращающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.

В соответствии с ГОСТ 12.1.044 по агрегатномусостоянию вещества и материалы подразделяются на:

ГАЗЫ — вещества, давление насыщенных паров которых при температуре 25°С и давлении 101,3 кПа (1 атм) превышает 101,3 кПа (1 атм).

ЖИДКОСТИ — то же, но давлении меньше 101,3 кПа (1 атм). К жидкос­тям относят также твердые плавящиеся вещества, температура плавления или ка-плепадения которых меньше 50°С.

ТВЕРДЫЕ — индивидуальные вещества и их смеси с температурой плавления или каплепадения выше 50°С (например, вазилин — 54°С [102]), а также вещества, не имеющие температуру плавления (например, древесина, ткани и т.п.).
ПЫЛИ — диспергированные (измельченные) твердые вещества и материалы с размером частиц менее 850 мкм (0,85 мм).

Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл.1.
Значения данных показателей должны включаться в стандарты и технические условия на вещества, а также указываться в паспортах изделий.

Таблица 1

Показатель Газы Жидкости Твердые Пыли
Группа горючести + + + +
Температура вспышки +
Температура воспламенения + + +
Температура самовоспламенения + + + +
Концентрационные пределы воспла­менения + + . — +
Условия теплового самовозгорания + +
Кислородный индекс +
Коэффициент дымообразования +
Способность взрываться и гореть при взаимодействии с водой, кисло­родом воздуха и другими вещества­ми + + + +
Показатель токсичности продуктов горения полимерных материалов И другие +

(Знак «+» обозначает применяемость, знак «—» неприменяемость показателя)

Температура ВСПЫШКИ (Твсп,) — только для жидкостей — наи­меньшая температура конденсированного вещества, при которой в усло­виях специальных испытаний над его поверхностью образуются пары, способные вспыхивать в воздухе от источника зажигания; устойчивое го­рение при этом не возникает.

Температура ВОСПЛАМЕНЕНИЯ (Тв,) — кроме газов — наимень­шая температура вещества, при которой вещество выделяет горючие па­ры и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается воспламенение.

Температура САМОВОСПЛАМЕНЕНИЯ (Тсв) – наименьшая тем­пература окружающей среды, при которой наблюдается самовоспламене­ние вещества.

УСЛОВИЯ ТЕПЛОВОГО САМОВОЗГОРАНИЯ – только для твер­дых и пылей — экспериментально выявленная зависимость между темпе­ратурой окружающей среды, количеством вещества (материала) и време­нем до момента его самовозгорания.

Температура САМОНАГРЕВАНИЯ — самая низкая температура вещества, при которой самопроизвольный процесс его нагревания не при­водит к тлению или пламенному горению.

Безопасной температурой длительного нагрева вещества считают тем­пературу, не превышающую 90% температуры самонагревания.

СПОСОБНОСТЬ ВЗРЫВАТЬСЯ И ГОРЕТЬ ПРИ ВЗАИМОДЕЙ­СТВИИ С ВОДОЙ, КИСЛОРОДОМ ВОЗДУХА И ДРУГИМИ ВЕЩЕСТ­ВАМИ (взаимный контакт веществ) — это качественный показатель, ха­рактеризующий особую пожарную опасность некоторых веществ.

КОЭФФИЦИЕНТ ДЫМООБРАЗОВАНИЯ – только для твердых — показатель, характеризующий оптическую плотность дыма, образую­щегося при пламенном горении или термоокислительной деструкции (тлении) определенного количества твердого вещества (материала) в услови­ях специальных испытаний.

Различают 3 группы материалов:

Группы материалов по дымообразующей способности Коэффициент дымообразования, м2/кг (м3/кг)
Малая до 50 вкл. (до 10 вкл.)
Умеренная свыше 50 до 500 вкл. (св. 10 до 100 вкл.)
Высокая свыше 500 (свыше 100)

У материалов с умеренной дымообразующей способностью количе­ство дыма, когда человек теряет способность ориентироваться, меньше

или равно количеству продуктов горения, при котором возможно смертель­ное отравление. Поэтому вероятность потери видимости в дыму выше веро­ятности отравления.

Примеры дымообразующей способности строительных материалов при тлении (горении), м3/кг,:

Древесное волокно (береза, осина) — 62 (20)

Декоративный бумажно-слоистый пластик — 75 (6)

Фанера марки ФСФ — 140 (30)

ДВП, облицованная пластиком — 170 (25)

ПОКАЗАТЕЛЬ ТОКСИЧНОСТИ ПРОДУКТОВ ГОРЕНИЯ ПОЛИ­МЕРНЫХ МАТЕРИАЛОВ — отношение количества материала к единице объ­ема замкнутого пространства, в котором образующиеся при горении материа­ла газообразные продукты вызывают гибель 50% подопытных животных.

Сущность метода заключается в сжигании исследуемого материала в камере сгорания и выявлении зависимости летального эффекта газооб­разных продуктов горения от массы материала (в граммах), отнесенной к единице объема (1 м3) экспозиционной камеры.

Классификация материалов приведена в таблице:

Класс опасности Показатель токсичности. г/м°, при времени экспозиции, мин
Чрезвычайно опасные До 25* До 17 До 13 До 10
Высокоопасные 25-70 17-50 13-40 10-30
Умеренноопасные 70-210 50-150 40-120 30-90
Малоопасные Св. 210 Св. 150 Св. 120 Св.90

* Для материалов чрезвычайно опасных по токсичности масса не превышает 25 грамм, чтобы создать смертельную концентрацию в объеме 1 м3за время 5 мин. Соответственно, за время 15 мин — до 17; 30 мин — до 13; 60 мин —до 10 грамм.

Например: сосна Дугласа — 21; виниловая ткань — 19; поливинил-хлорид — 16; пенополиуретан эластичный — 18 (жесткий — 14) г/м3 при времени экспозиции 15 мин.

КОНЦЕНТРАЦИОННЫЕ ПРЕДЕЛЫ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ (ВОСПЛАМЕНЕНИЯ) – кроме твердых.

Нижний (верхний) концентрационные пределы распространения пламени (воспламенения) — минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при ко­тором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Примеры нижнего-верхнего концентрационных пределов, %,: ацетилен — 2,2-81; водород — 3,3-81,5; природный газ — 3,8-24,6; метан — 4,8-16,7; пропан — 2-9,5; бутан — 1,5-8,5; пары бензина — 0,7-6; пары керосина — 1-1,3.

Температура ТЛЕНИЯ — для твердых и пылей — температура ве­щества, при которой происходит резкое увеличение скорости экзотерми­ческих реакций окисления, заканчивающихся возникновением тления.

ГРУППА ГОРЮЧЕСТИ — классификационная характеристика спо­собности любых веществ и материалов к горению.

По горючести вещества и материалы подразделяются на три груп­пы: негорючие, трудногорючие и горючие.

НЕГОРЮЧИЕ (несгораемые) — вещества и материалы, не способ­ные к горению в воздухе. Негорючие вещества могут быть пожаровзрывоопасными (например, окислители или вещества, выделяющие продукты при взаимодействии с водой, кислородом воздуха или друг с другом).

ТРУДНОГОРЮЧИЕ (трудносгораемые) — вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но не способные самостоятельно гореть после его удаления.

ГОРЮЧИЕ (сгораемые) — вещества и материалы, способные само­возгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.

Горючие жидкости (ГЖ) с Tвсп

Источник: https://studall.org/all-116210.html

Кинетическое горение: определение, виды и характеристика

Диффузионное и кинетическое горение

Кинетическое горение – это горение заранее перемешанных топлива (горючего газа, пара или пыли) и окислителя.

При кинетическом горении горючее вещество и кислород поступают в зону горения предварительно смешанными. В этом случае определяющим фактором является скорость химической реакции между кислородом (окислителем) и горючим.

В качестве примера кинетического горения можно привести горение горючей смеси газов или паров с воздухом, образовавшейся до начала процесса горения, что наблюдается, например, в закрытых аппаратах.

Чем выше скорость горения вещества, тем более серьезные последствия вызывает горение.

Взрыв

Скорость горения готовой смеси практически зависит только от скорости химической реакции между горючим веществом и кислородом воздуха (теплопроводности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает и носит взрывной характер.

Если при кинетическом горении скорость перемещения фронта пламени равна или меньше скорости звука (340 м/с), то горение (взрыв) называют дефлаграционным. Если же скорость перемещения фронта пламени будет выше звуковой, то горение (взрыв) называют детонационным.

При детонационном взрыве скорость перемещения пламени составляет для:

  • водорода – 1770 м/с;
  • метана – 1750 м/с;
  • пропана – 1850 м/с;
  • ацетилена – 1990 м/с;
  • метанола – 1800 м/с.

При детонационном и дефлаграционном взрыве создается воздушная ударная волна, способная производить разрушения окружающих строений, подвижного состава, наносить травмы человеку, иногда несовместимые с жизнью.

Скорость выгорания смеси, а следовательно и величина давления при взрыве, зависят от ее состава. Максимальная скорость выгорания наблюдается у стехиометрических смесей. Стехиометрической смесью называется смесь, в которой соотношение между горючим веществом (твердым, жидким или газообразным) и окислителем соответствует уравнению реакции горения.

Принцип сжигания газов

Кинетический принцип сжигания применяется, когда газ необходимо сжигать с высокой интенсивностью в пространстве малого объема с минимальным химическим недожогом и когда технологический процесс не требует длинного светящегося факела. Кинетический принцип сжигания можно осуществить как в ламинарном, так и в турбулентном потоках.

в ламинарном потоке

При горении заранее подготовленной смеси с недостатком воздуха в ламинарном потоке, факел имеет четко выраженные голубой конус и слабо светящийся внешний ореол. Поверхность голубого конуса представляет собой первичный фронт пламени, в котором полностью расходуется кислород газовоздушной смеси.

Избыток горючего проходит через первичный фронт пламени и догорает позади его вследствие диффузионного смешения с окружающим воздухом, образуя зону вторичного диффузионного горения. Ярким примером такого горения является горение в горелках кухонной газовой плиты.

Горелки устроены так, что в них при прохождении газа подсасывается воздух и в зону горения попадает уже газовоздушная смесь.

Бытовые газовые приборы

На газовой горелке фронт пламени кажется неподвижным, так как его положение не меняется во времени относительно самой горелки.

Однако на самом деле он движется по горючей газовой смеси со скоростью, равной скорости движения этой смеси относительно горелки.

В этом можно легко убедиться, если уменьшить или прекратить подачу горючей газовой смеси, пламя в этом случае уйдет в горелку до места смешения горючего и окислителя.

Если увеличивать избыток воздуха в горючей смеси, то по мере приближения к стехиометрической количество газа, сгорающего в зоне первичного горения, будет увеличиваться, а в зоне вторичного горения уменьшаться. При стехиометрической смеси зоны первичного и вторичного горения сливаются, образуя одну поверхность горения, отделяющую холодную горючую смесь от продуктов сгорания.

Длина кинетического ламинарного факела с достаточной степенью точности может быть определена по формуле, применявшейся для определения нормальной скорости распространения пламени по методу горелки.

Следует отметить, что процесс кинетического горения газа происходит при температурах, близких к теоретической. Зона горения очень тонка и измеряется десятыми долями миллиметра.

Кинетическое горение в ламинарном потоке не имеет широкого распространения и применяется лишь в небольших нагревательных приборах. В крупных горелочных устройствах эта разновидность сжигания практически неосуществима, так как при малых скоростях ламинарного потока газовоздушной смеси возникают так называемые обратные удары – проскоки пламени внутрь горелок.

в турбулентном потоке

Кинетическое сжигание газа в турбулентном потоке в отличие от сжигания в ламинарном потоке имеет довольно широкое распространение в технике.

При турбулизации потока в связи с возникновением пульсаций скорости структура фронта пламени значительно отличается от ламинарного фронта пламени.

Различают мелкомасштабную и крупномасштабную турбулентность. При мелкомасштабной турбулентности путь смешения I (масштаб турбулентности) не превышает толщины ламинарного фронта пламени.

Фронт пламени при такой турбулентности принимает извилистую форму, что приводит к заметному увеличению суммарной поверхности и к сжиганию большего количества газа на единицу поперечного сечения потока (см. рисунок).

а – ламинарное движение; б – мелкомасштабная турбулентность; в – крупномасштабная турбулентность.

При крупномасштабной турбулентности, когда путь смешения больше толщины ламинарного фронта пламени, частицы горящего газа и продуктов горения из фронта пламени попадают в свежую смесь, где создают новые очаги горения и, наоборот, частицы свежей смеси попадают во фронт пламени и образуют в нем горящие элементарные объемы. Таким образом, фронт пламени дробится па отдельно горящие частицы, окруженные продуктами сгорания; при этом толщина фронта пламени резко возрастает и измеряется сантиметрами.

Механизм горения отдельных элементарных объемов еще недостаточно ясен.

Существует теория фронтового турбулентного горения, согласно которой на поверхности элементарных объемов горючей смеси возникает тонкий фронт пламени, распространяющийся вглубь с нормальной скоростью распространения.

В противовес указанной существует теория объемного турбулентного горения, согласно которой этот процесс должен протекать не на поверхности, а во всем объеме элементарных частиц горючей смеси.

Эта теория основывается на том, что в условиях интенсивной турбулентной диффузии в элементарных объемах горючей смеси устанавливаются постоянная температура и концентрация, поэтому ламинарный фронт пламени на поверхности не успевает образоваться и процесс реагирования протекает во всем объеме. Существует также мнение, что одновременно сочетается фронтовое и объемное горение.

На рисунке ниже представлена схема кинетического факела при турбулентном движении потока.

Структура турбулентного кинетического факела:

Lв – длина холодного ядра пламени (зона воспламенения), δт – толщина турбулентного фронта пламени в направлении оси струи, Lд – толщина зоны догорания в направлении оси струи, Lф – полная длина факела

В факеле можно различить следующие зоны:

  • холодное ядро – конус 1, где движется еще не воспламенившаяся горючая смесь;
  • зона воспламенения или видимый фронт турбулентного пламени – зона 2, где происходит воспламенение и горение частиц газа; в этой зоне выгорает значительное количество горючего (до 90%);
  • невидимая зона догорания – зона 3, где происходит полное завершение горения или достигается равновесие между газообразными продуктами сгорания (при наличии диссоциации).

Воспламенение струи происходит в ее наружных слоях вследствие интенсивного нагрева свежей горючей смеси при ее смешении с горячими продуктами сгорания.

Отличительной особенностью турбулентного пламени является наличие размытого утолщенного фронта пламени, тогда как в ламинарном пламени он имеет гладкую поверхность на очень малую толщину.

Переход от кинетического горения к диффузионному

Рис. 1. Переход из кинетического горения газа в диффузионное

Кинетическое горение может быть постепенно переведено в диффузионное, для чего достаточно начать уменьшение первичного избытка воздуха в горючей смеси. При недостатке воздуха фронт кинетического горения (I) (рис.

1) будет сжигать лишь ту часть топлива в горючей смеси, которая соответствует стехиометрическому соотношению, т.е. пока не израсходуется наличный кислород. Оставшиеся несгоревшими горючие газы смешаются с продуктами полного сгорания, представляя собой газообразное топливо, соответственно забалластированное инертными газами, т.е.

топливо с пониженной теплоплотностью X, но способное гореть при смешении его с добавочным воздухом.

Если кинетическое горение ведется в воздушной атмосфере, необходимый воздух будет диффундировать во втекающую струю из окружающей ее среды и возникнет подожженный с корня новый фронт горения по образующейся стехиометрической поверхности II в зоне смесеобразования I-III.

При ламинарном движении потока образующиеся на этом вторичном фронте новые инертные продукты сгорания будут с помощью молекулярной диффузии диффундировать в обе стороны: в межфронтальную зону I-II, т.е.

зону смесеобразования вторичного газообразного топлива с продуктами сгорания фронта II и в зону, образуемую границами фронта II и втекающего в атмосферу потока III, представляющую собой зону взаимной диффузии продуктов полного сгорания фронта II и воздуха. Это иллюстрируется схемами 3, 4, 5, 6 на рис. 1.

Дальнейшее уменьшение первичного избытка воздуха в горючей смеси равносильно забалластированию последней избыточным топливом, что согласно предыдущему приводит к уменьшению uнорм и к удлинению кинетического конуса горения.

Получающееся вторичное топливо с уменьшением первичного избытка (α1 > α2 > α3 = 0) постепенно обогащается и требует для полного сгорания все больше и больше кислорода, диффундирующего из окружающей среды, вследствие чего диффузионный фронт II также растягивается. Постепенно оба фронта, кинетический (I) и диффузионный (II) сближаются и при α3 = 0 горение становится чисто диффузионным. На рис. 1 схемы 1 и 2 соответствуют чисто кинетическому горению, причем в схеме 1 смесь забалластирована избыточным воздухом и кинетический конус несколько вытянут. Наименьшее развитие он получает при αт>1, соответствующем uнорммакс, но при этом уже возникает внешний, диффузионный факел. Схемы 3, 4, 5 являются переходными, а схема 6 соответствует чисто диффузионному горению α3 = 0.

На рис. 2 показана фотография перераспределения кинетического и диффузионного фронтов по мере уменьшения первичного избытка воздуха на бунзеновском пламени.

Рис. 2. Изменение фронтов горения (внутреннего и внешнего) по мере убывания первичного избытка воздуха

Оба фронта легко могут быть искусственно отдалены друг от друга с помощью несложного прибора для «расчлененного» пламени, применяемого для устранения влияния диффузионного горения на конфигурацию кинетического конуса.

На этом же приборе исследование показало, что химическое равновесие наступает непосредственно за первым фронтом, т.е.

в межфронтальной зоне прекращаются химические реакции и не могут возникать явления хемилюминисценции (свечение при протекании некоторых химических реакций).

Следует обратить внимание на соотношения в развитии кинетического и диффузионного фронтов горения. На представленной масштабной схеме (рис. 3) видно, что кинетическое горение протекает значительно быстрее (∼2 калибра) диффузионного (∼4 калибра).

Во втором случае скорость горения определяется скоростью диффузионного процесса смесеобразования, сводящегося к медленному процессу взаимной молекулярной диффузии газов из трех концентрационных источников: свежего вторичного горючего газа, продуктов сгорания фронта II и воздуха из окружающей среды.

Строго диффузионное горение, в котором смесеобразование будет возникать только за счет молекулярной диффузии, может быть получено лишь при условии ламинарного движения горючего газа и воздуха.

Рис. 3. Расчлененное пламя

I – кинетический факел; II – диффузионный факел (масштаб соотношения длин факелов по опытам Габера и Рихарда)

Источники: Пожарная безопасность. Энциклопедия. –М.: ФГУ ВНИИПО МЧС России, 2007; Теория горения и взрыва. Часть 1: Конспект лекций. Щеглов П.П. –М.

: МИИТ, 2008; Теория горения и взрыва: Учебное пособие. Андросов А.С., Бегишев И.Р., Салеев Е.П. – М.: Академия ГПС МЧС России, 2007; Введение в теорию горения и газификации топлива. Лавров Н.В., Шурыгин А.

П. Академия наук СССР. –М.: 1962.

Источник: https://fireman.club/inseklodepia/kineticheskoe-gorenie/

ПОИСК

Диффузионное и кинетическое горение
    Диффузионное горение может быть переведено в кинетическое при увеличении содержания воздуха в газовоздушной смеси до теоретически необходимого. Кинетическое горение протекает значительно быстрее диффузионного, а длина факела при кинетическом горении короче, чем при диффузионном.

Кинетическое горение зависит от свойств данной газовоздушной смеси, температуры и давления в пространстве, где происходит горение. [c.

21]
    При диффузионном горении кислород из воздуха проникает а зону горения в результате молекулярной диффузии, обусловленной разностью парциальных давлений кислорода в воздухе и в зоне горения. Прн кинетическом горении кислород и горючее вещество поступают в зону горения в смешанном состоянии.

Так горят химически однородные (гомогенные) горючие системы, в которых молекулы кислорода находятся в тесном контакте с молекулами горючего вещества.

В этом случае продолжительность смесеобразования (диффузии) значительно меньше времени, необходимого для протекания химической реакции горения, и скорость процесса горения практически определяется только скоростью реакции горения. [c.181]

    Граница кинетической области горения 2 — нижняя граница горящего пограничного слоя 3 — граница диффузионной области горения [c.170]

    При расчетах выгорания полифракционной пыли удобно величину С выражать через текущий размер наиболее крупной частицы 61. Для этого нужно установить связь между текущим размером частицы промежуточной фракции б и размером б . Рассмотрим эту связь для кинетической и диффузионной областей горения. [c.204]

    Чтобы процесс перешел из диффузионной области горения в кинетическую, необходимо увеличить коэффициент массообмена р. Для процесса горения слоя частиц получено (с применением теории подобия) следующее уравнение, связывающее коэффициент массообмена Р со скоростью продувки Слоя воздухом W, коэффициентом диффузии О, диаметром частиц с1 и кинематической вязкостью V  [c.127]

    КИНЕТИЧЕСКИЙ И ДИФФУЗИОННЫЙ РЕЖИМ ГОРЕНИЯ. [c.95]

    Развиваемая автором система представлений целиком опирается на современную диффузионно-кинетическую теорию горения, которая обязана своими наиболее систематизированными и наиболее четкими положениями трудам советских ученых. [c.3]

    Внешнее диффузионное горение (гетерогенное). Представления, развиваемые современной диффузионно-кинетической теорией горения [Л. 70, 26, 31, 11, 68,69, 56,47,45, 72, 73 и др.

], приняли пока наиболее отчетливые формы в отношении гетерогенных процессов горения.

Так, если принять для простоты,что горение углеродной поверхности подчиняется реакции первого порядка, то при установившемся процессе должно согласно предыдущему соблюдаться следующее равенство  [c.74]

Фиг. 9-12. Переход из кинетического горения газа D диффузионное.

    Следует обратить внимание на соотношения в развитии кинетического и диффузионного фронтов горения. На представленной [c.90]

    Кинетическое горение готовой горючей смеси в турбулентном потоке при стационарных процессах обычно связано с потерей устойчивости очага горения.

В тех пределах, в которых устойчивость процесса все же оказывается осуществимой, горение начинает зависеть от факторов диффузионного порядка и может перейти в чисто диффузионную область, где скорость горения окажется зависящей только от скорости смещения горючих газов и продуктов сгорания, иначе говоря,— от характера турбулентности потока. [c.93]

    Кинетический принцип сжигания. Организация процессов сжигания топлива в воздушном потоке может основываться на различных принципах.

Крайними (предельными) приемами в соответствии с современной диффузионно-кинетической теорией горения следует считать сжигание топлива по кинетическому и диффузионному методам.

В случае применения кинетического принципа предварительно создается однородная (гомогенная) смесь топливо -f- воздух , которая и вводится в готовом виде в топочное устройство. [c.122]

    Эти пределы могут ограничиваться уже другими факторами, в основном — устойчивостью создаваемого горелкой фронта воспламенения.

Если верхний предел форсировки недостаточно велик, приходится усложнять горелку уже за счет введения мероприятий, связанных с усилением стабилизации фронта воспламенения.

Однако для диффузионного метода пределы допустимых форсировок, не нарушающих устойчивости очага горения, гораздо шире, чем при методе кинетическом.

Такая устойчивость диффузионного очага горения (в противовес кинетическому) в значительной мере должна объясняться предельной неоднородностью газового потока по концентрации, т. е. по избытку окислителя, который численно меняется в этом случае по сечению потока от нуля (чистое топливо) до бесконечности (чистый окислитель). [c.126]

    Кинетический режим гореиий, как это можно заключить из предыдущего, имеет место при умеренных температурах процесса, в том числе и в период разогрева частицы топлива перед ее воспламенением.

Диффузионный режим горения, наоборот, характерен для высокотемпературных процессов. С этой точки зрения воспламенение можно рассматривать как переход ог кинетического к диффузионному режиму горения. [c.

17]

    При рассмотрении воспламенения угольной частипы было отмечено, что воспламенение можно рассматривать как начало перехода от кинетического к диффузионному режиму горения.

Быстрое развитие высоких температур в факеле обусловливает соответственно резкое возрастание скорости химических реакций.

Благодаря этому горение твердых коксовых частиц в зоне максимальных температур — ядре факела протекает, как правило, в условиях значительного диффузионного торможения, которое и определяет видимую скорость горения. По мере последующего снижения температуры в факеле [c.30]

Рис. V-1. Схемы организации кинетического (а) и диффузионного (б) горения.

    Как при кинетическом, так п при диффузионном сжигании газообразного топлива тепловое напряжение топочного пространства не является достаточно устойчивой характеристикой процесса. В зависимости от организации горения эта величина колеблется в очень широких пределах. Более или менее точный аналитический расчет максимально допустимых тепловых напряжений возможен только для отдельных случаев кинетического горения в ламинарном потоке. [c.152]

    В случае диффузионного горения общая продолжительность процесса т” слагается из продолжительности диффузионного перемешивания газа с воздухом Тд, сопровождающегося интенсивным нагреванием компонентов, и времени течения реакции. Так как отрезок Тд значительно больше т , то количество выделяющегося углерода С” будет во много раз больше, чем С при кинетическом горении. Это определяет возникновение сажистого факела. [c.158]

    На рис. У1-18 показана диффузионно-кинетическая горелка с выходом газа для диффузионного горения в амбра- [c.188]

    Здесь Н — высота слоя Оэф.

т — коэффициент диффузии (перемешивания) частиц топлива в КС инертного материала аУт — скорость направленного движения слоя (частиц) вдоль оси х /(С) —количество горючих, исчезающих с единицы площади слоя в единицу времени из-за сгорания. Кроме концентрации топлива величина /(С) зависит от диффузионно-кинетических констант горения. Она может быть рассчитана по формулам, приведенным в 4.2.1. [c.220]

    Различия между кинетическими и диффузионными режимами горения весьма четкие, однако на практике часто наблюдаются и промежуточные случаи.

Например, сформировав сначала в бунзеновской горелке чисто кинетическое пламя, а затем постепенно снижая подачу воздуха до нуля, можно наблюдать переходный процесс вплоть до образования чисто диффузионного пламени.

Все типы пламен от кинетических до диффузионных наблюдаются в реальных устройствах и установках, использующих процессы горения как источники светового излучения или тепла. [c.15]

    Переход от кинетического горения к-диффузионному. Кинетическое горение может быть постепенно переведено в диффузионное, для чего достаточно начать уменьшение первичного избытка воздуха в горючей смеси. При недостатке воздуха фронт кинетического горения (/) (фиг.

9-12) будет сжигать лишь ту часть топлива в горючей смеси, которая соответствует стехиометрическому соотношению, т. е. пока не израсходуется наличный кислоро т. Оставшиеся несгоревшими горючие газы смешаются с продуктами полного сгорания, представляя собой газообразное топливо, соответственно забалластированное инертными газами, т. е.

топливо с пониженной теплоплотностью X, но способное гореть при смешении его с добавочным воздухом.

Если кинетическое горение ведется в воздушной атмосфере, необходимый воздух будет диффундировать во втекающую струю из окруж ощей ее среды и возникнет подожженный с корня новый фронт горения по образующейся стехиометрической поверхности// в зоне смесеобразования /—III.

При ламинарном движении потока образующиеся на этом вторичном фронте новые инертные продукты сгорания будут с помощью молекулярной диффузии диффундировать в обе стороны в межфронтальную зону /—II, т. е.

зону смесеобразования вторичного газообразного топлива с продуктами сгорания фронта II и в зону, образуемую границами фронта II и втекающего в атмосферу потока III, представляющую собой зону взаимной диффузии продуктов полного сгорания фронта II и воздуха. Это иллюстрируется схемами 3, 4, 5, 6 на фиг. 9-12. Дальнейшее уменьшение первичного избытка воздуха в горючей смеси равносильно забалластированию последней избыточным топливом, что согласно предыдущему приводит к уменьшению и к удлинению [c.90]

    Реакционная способность углерода сильно зависит от его структуры и наличия в его составе примесей. Как показали эксперименты, проведенные в работе [3.49] с катализаторами крекинга, наибольшее влияние на выжиг коксовых отложений в диффузионной области горения оказывает добавление железа. На образце катализатора, содержащем 0.

8% железа, отложенный кокс сгорал в два раза быстрее, чем на исходном катализаторе. В кинетической области присутствие железа мало влияет на скорость регенерации катализатора каталитического крекинга. Сгорание кокеа на образце, содержащем железо, обусловлено характером распределения кокса по сечению частицы катализатора.

На таком катализаторе кокс в основном откладывается в периферийных областях частицы, а если учесть, что у используемого нами железоокисного катализатора объем пор и поверхность значительно меньше, чем у катализаторов крекинга, то необходимая глубина проникновения кислорода в зону горения уменьшается, в результате должно происходить ускорение выгорания отложений. [c.76]

    От диффузионного пламени отличается пламя, образующееся при горении заранее перемешанного горючего газа с воздухом (кинетическое горение).

Это пламя при воспламенении какой-Jщбo части объема горючей смеси представляет собой светящуюся зону, в которой соприкасаются друг с другом свежая смесь и продукты горения зона горения всегда движется в сторону свежен горючей смеси, а фронт пламени имеет большей частью сферическую форму. При сгорании смесн горючих газов или паров с воздухом, подаваемых с определенной скоростью к юне горения, образуется стационарное пламя, имеющее форму хонуса. Во внутренней части конуса смесь подогревается до тем-лературы воспламенения. В остальной части конуса происходит орение, характер которого зависит от состава смеси. Если в смеси недостаточно кислорода, то во внешней части конуса про- [c.120]

    Горение жидкостей характеризуется двумя взаимосвязанными явлениями испарением паров и сгоранием паровоздушной смеси над поверхностью жидкости.

При этом испарение является определяющим фактором от него зависят режим (установившийся или неустанов1[вшийся, диффузионный или диффузионно-кинетический), а также полнота и скорость сгорания жидкости.

В свою очередь скорость испарения зависит от физикохимических свойств продукта (температуры кипения, летучести [c.181]

    ЛекшяЛ . Диффузионно-кинетическая теория горения и газификации. [c.317]

    Исходя из основного нредиоло/кения, что скорость гореиия пропорциональна квадратному корню из скорости выделения тепла в зоне реакции (по аналогии с теорией Зельдовича — Франк-Каменецкого см. 1, Е), было получено выражение для скорости горения мелкодисперсного пороха.

Для диффузионного режима горения частиц угля скорость горения пороха и — p/d, для кинетического (реакция первого порядка) и — р/У 1) к чисто диффузионному (ят = 0), проходя все промежуточные этапы между ними .

Такой прием может служить удобным добавочным принципом регулировки, так как изменение соотношений между первичным и вторичным воздухом, что и приводит к изменению избытка воздуха в первичной смеси, непосредственно воздействует на форму и рабочий объем факельного горения. [c.

127]

    Выясняется, что скорость сгорания углеродных частиц за.в исит от произведения ( о р), входящего в выражение в степени 0,4 и показывающего, что интенсивность горения может быть увеличена как за счет увеличения скорости потока, так и за счет повышения давления процесса.

Диффузионное время горения оказывается пропорциональным радиусу частицы в степени 1,6, кинетическое — в первой степени (принимается, что реакция идет по первому порядку) [c.202]

    Как и при кинетическом горении, для стабилизации фронта горения турбулентного диффузионного факела устойчивое поджигание может быть достигнуто с помощью постоянно действующего постороннего источника тепловой энергии ( дежурные огни в заторможенной части потока и т. п.).

Однако опыт показывает, что в подавляющем большинстве случаев, при не слишком чрезмерных форсировках горелки, применение посторонних (источников поджигания не вызывается необходимостью. Они предусматриваются только для целей р Озжига, т. е. применяются в период стабилизации [c.

232]

    В этом случае, если первичный воздух будет подаваться в количестве, заведомо значительно меньшем, чем нужно для полного сгорания топлива, должны, как известно, возникнуть два фронта горения первый — кинетический и второй — диффузио нный.

Если в кинетическом фронте горения при надлежащем сочетании кинетических и гидродинамических условий, достаточно подробно разбиравшихся ранее, возникнет участок прямой стабилизации воопламенения оря — пот) и станет постоянной зоной поджигания как кинетического, так и диффузионного фронтов горения (фиг. 21-12). [c.233]

    Описанный режим горения предварительно составленной гомогенной топливно-воздушной -смеси является кинетическим и не зависит от условий образования смеси. Если уменьшить количество воздуха в составе вдуваемой смеси ниже стехио-метрического, то во фр01нте кинег ле-ского горения сможет сгореть лишь часть топлива.

При наличии в окружающей вдуваемую струю газовой среде свободного кислорода догорание оставшейся части топлива будет происходить в результате диффузии кислорода из внешней среды.

Чисто диффузионный режим горения газообразного топлива может иметь место при горении струи топлива, вдуваемой в воздушную среду (или раздельном вдувании топлива и воздуха в топочную камеру). [c.22]

    В зависимости от места подготовки горючей газовоздушноп смеси различают кинетическое и диффузионное горение. При кинетическом горении смесь с минимально необходимым или избыточным количеством воздуха приготовляется вне топки, обычно в смесителе горелки.

Такое смесеобразование идет без внешнего теплового воздействия на процесс. В пределах тонки происходят лишь процессы нагрева и воспламенения смеси и стабилизация фронта пламени.

При диффузионном горении газ и воздух подводятся к месту сгорания (тонке) раздельно i где и образуется горючая смесь. [c.120]

    В процессе горения, так же, как и в других химических процессах, обязательны два этапа создание молекулярного контакта между реагентами и само взаимодействие молекул с образованием продуктов реакции.

Скорость превращения исходных продуктов в конечные зависит от скорости смешивания реагентов путем молекулярной и турбулентной диффузии и от скроости химических реакций. В предельном случае характеристики горения могут определяться только скоростью химического взаимодействия, т. е.

кинетическими константами и факторами, влияющими на них (кинетический режим горения), или только скоростью диффузии и факторами, влияющими на нее (диффузионный режим горения). [c.7]

Источник: https://chem21.info/info/1717005/

Book for ucheba
Добавить комментарий