Энергия в экосистеме. Пищевые цепи и пищевые сети

Содержание
  1. 12.2.1. Энергия в экосистеме. Пищевые цепи и пищевые сети
  2. Page 3
  3. Page 4
  4. Пищевые цепи и сети. Трофические уровни и поток энергии в экосистеме
  5. Книга: Естествознание и основы экологии
  6. 3 Поток энергии в экосистемах
  7. 4 Пищевые цепи и сети, трофические уровни
  8. Растение  заяц  волк продуцент  травоядное  плотоядное
  9. Самая удобная и увлекательная подготовка к ЕГЭ
  10. Структура и функционирование экосистем
  11. Функциональные группы организмов в экосистеме
  12. Трофические уровни в цепи питания
  13. Типы пищевых цепей
  14. Динамика экосистем
  15. Типы сукцессий
  16. Природные экосистемы
  17. Антропогенные экосистемы
  18. Трофические уровни: типы, значение, схемы и определение пищевой цепи
  19. Автотрофы (продуценты)
  20. Гетеротрофы (консументы)
  21. Деструкторы (редуценты)
  22. Уровни пищевой (трофической) цепи
  23. Первый трофический уровень
  24. Второй трофический уровень
  25. Третий трофический уровень
  26. Четвертый трофический уровень
  27. Пятый трофический уровень
  28. Пастбищная пищевая цепь
  29. Детритная пищевая цепь
  30. Энергия в пищевой цепи
  31. Значение пищевой цепи
  32. Энергия в экосистеме. Пищевые цепи

12.2.1. Энергия в экосистеме. Пищевые цепи и пищевые сети

Энергия в экосистеме. Пищевые цепи и пищевые сети

12.2.1. Энергия в экосистеме. Пищевые цепи и пищевые сети

   Физики определяют энергию как способность производить работу или теплообмен между двумя объектами, обладающими разной температурой. Энергия – основа «работы» любой экосистемы, в которой происходят синтез и многократные преобразования веществ.   Основным источником энергии является Солнце.

Даже гетеротрофные экосистемы используют солнечную энергию, хотя и через посредников, в роли которых выступают автотрофные экосистемы, поставляющие органические вещества. Ю. Одум даже определил экологию как науку, которая «… изучает связь между светом и экологическими системами и способы превращения энергии внутри экосистемы» (1986, с. 106).

   Поток солнечной энергии постоянно протекает через фотоавтотрофные организмы, причем, при передаче энергии от одного организма к другому в пищевых цепях происходит ее рассеивание в виде тепла.

Из поступающей на Землю энергии Солнца экосистемой усваивается не более 2%, чаще – 0,5-1% (в экспериментальных культурах морских планктонных водорослей удалось достичь уровня фиксации солнечной энергии 3,5%). Большая часть энергии используется на транспирацию, отражается листьями, идет на нагревание атмосферы, воды и почвы.

   Последовательность организмов, в которой каждый предыдущий организм служит пищей последующему, называется пищевой цепью. Каждое звено такой цепи представляет трофический уровень (растения, фитофаги, хищники I порядка, хищники II порядка и т.д.).

   Различают два типа пищевых цепей: пастбищные (автотроф- ные), в которых в качестве первого звена выступают растения (трава – корова – человек; трава – заяц – лисица; фитопланктон – зоопланктон – окунь – щука и др.

), и детритные (гетеротрофные), в которых первое звено представлено мертвым органическим веществом, служащим пищей детритофагам (опавший лист – дождевой червь – скворец – сокол). Количество звеньев в пищевых цепях может быть от одного-двух до пяти-шести. Пищевые цепи в водных экосистемах, как правило, более длинные, чем в наземных, соответственно максимальное число трофических уровней – 6 и 4. Примеры пищевых цепей приведены в табл. 18.

Таблица 18
Примеры пищевых цепей  

Тип пищевой цепи  Трофический уровень  
I  II  III  IV  V  VI  
Пастбищная  Естественные экосистемы  
растение  заяц  лисица  беркут  
фитопланктон(водоросли,цианобактерии)растительноядный зоопланктон (ветвистоусые рачки, коловратки)  плотоядный зоопланктон (циклопы)  плотва  окунь  щука  
Сельскохозяйственные экосистемы  
пшеница  корова  человек  
пшеница  человек  
Детритная  детрит  дождевой червь  скворец  сокол  
детрит  термит  муравей  

   Поскольку большинство организмов имеет широкую диету (т.е. могут использовать в пищу организмы разных видов), то в   реальных экосистемах функционируют не пищевые цепи, а пищевые сети. К примеру, тли поедаются личинками и жуками божьих коровок, пауками, личинками мух-сирфид и даже насекомоядными птицами.

Дуб является пищей для сотен членистоногих, нематод, паразитических грибов и т.д. Его желудями питаются птицы и мелкие млекопитающие. Хищники могут от преследования особей одной популяции при ее истощении переключаться на поедание организмов из популяций других видов.

Так, исследования энтомологов показали, что число специализированных фитофагов (причем не только в умеренной полосе, но и в тропических лесах) сравнительно невелико и преобладают насекомые с широкой диетой. Это не исключает наличия некоторого количества монофагов, специализированных на поедании лишь отдельные органов (завязей, плодов, листьев и др.) растений одного вида.

Формирование пищевых сетей – один из важных факторов повышения устойчивости экосистем.   Таким образом пищевая цепь – это упрощенное выражение трофических отношений в экосистеме.

   Эффективность передачи энергии по пищевой цепи зависит от двух показателей:   1) полноты выедания (доли организмов предшествующего трофического уровня, которые были съедены живыми);   2) эффективности усвоения энергии (удельной доли энергии, которая перешла на следующий трофический уровень в пересчете на каждую единицу съеденной биомассы).

   Полнота выедания и эффективность усвоения энергии возрастают с повышением трофического уровня и меняются в зависимости от типа экосистемы. Так, в лесной экосистеме фитофаги потребляют менее 10% продукции растений (остальное достается детритофагам), а в степи – до 30%. В водных экосистемах выедание фитопланктона растительноядным зоопланктоном еще выше – до 40%.

Этим объясняются основные краски Земли на космических снимках: леса зеленые именно потому, что фитофаги съедают мало фитомассы, а океан голубой, оттого что фитофаги выедают достаточно много фитопланктона.

   С повышением трофического уровня полнота выедания еще более возрастает, хищники высших порядков выедают до 90% своих жертв, поэтому доля животных, которым удается дожить до естественной смерти, очень невелика.

В водных экосистемах, к примеру, в детрит переходит 100% биомассы хищных рыб (их есть некому, и плотность популяции контролируют только паразиты), но лишь 1/4 часть биомассы планктоноядных рыб, которые умерли «своей смертью». Этот детрит опускается на дно. Часть его поедается детритофагами бенотоса, а остальная – попадает в донные осадки (сапропель).

Доля детрита, поступающего в осадки, тем больше, чем выше продуктивность водной экосистемы.   При оценке коэффициента усвоения энергии в пищевых цепях часто использовали «число Линдемана»: с одного трофического уровня на другой в среднем передается 10% энергии, а 90% – рассеивается. Однако это «число» чрезмерно упрощает и даже искажает реальную картину.

«Закон 10%» действует только при переходе энергии с первого трофического уровня на второй, и то не во всех случаях. Эффективность усвоения энергии в следующих звеньях пищевой цепи – от фитофагов к зоофагам или к хищникам высших порядков – может достигать 60%.

   В состав пищевой сети могут входить пищевые цепи разной длины, с разной скоростью протекания через них энергии и с разной эффективностью ее передачи. Именно такая сложная организация пищевой сети позволяет экосистеме адаптироваться к изменениям внешних условий.

В лесной экосистеме, к примеру, в годы массового развития непарного шелкопряда резко возрастает интенсивность протекания энергия по пищевым цепям «лист – гусеница – энтомофаг» и «растения напочвенного покрова – фитофаги – энтомофаги», так как улучшаются условия освещения в результате осветления полога и условия минерального питания за счет обильных экскрементов гусениц.

   Высокой эффективностью усвоения энергии в «плотоядных» звеньях пищевых цепей объясняется сравнительно небольшое количество экскрементов хищников и ограниченность состава са- протрофов (редуцентов, копрофагов), питающихся ими. Основная фауна копрофагов связана с экскрементами растительноядных животных.

   Одна из главных причин «утечки» энергии из пищевой цепи – траты на дыхание, которые могут быть больше, чем энергетические затраты на увеличение массы самого организма. При этом соотношение затрат на дыхание и формирование биомассы зави- сит от возраста организма. По этой причине «аппетит» животных с возрастом снижается.

Так, мальки карпов весом меньше 15 г съедают ежесуточно корм, вес которого составляет 1/4 их собственного веса. У более крупных особей с весом от 150 до 450 г дневной рацион пищи составляет уже не более 1/10 массы тела, а у больших рыб с весом более 1 кг – только 1/16.

Знание этой закономерности – молодые животные много едят и быстро прибавляют в весе, а старые едят меньше, но их привесы резко снижаются – используется при расчете кормовых рационов для скота и определения возраста его забоя.

В итоге в пищевой цепи на каждом следующем трофическом уровне относительное количество передаваемой энергии возрастает, так как одновременно увеличивается и потребление живой биомассы, и ее усвоение.   Прохождение энергии по пищевым цепям подчиняется действию первого и второго законов термодинамики.   Первый закон (сохранения энергии) – о сохранении ее количества при переходе из одной формы в другую. Энергия не может появиться в экосистеме сама собой, она поступает в нее извне с солнечным светом или вследствие химических реакций и усваивается продуцентами. Далее она будет частично использована консументами и симбиотрофами, «обслуживающими» растения, частично – редуцентами, которые разлагают мертвые части растений, и частично – затрачена на дыхание. Если суммировать все эти фракции расхода энергии, усвоенной растениями в фотоавто- трофной экосистеме, то сумма будет равна той потенциальной энергии, которая накоплена при фотосинтезе.   Второй закон – о неизбежности рассеивания энергии (т.е. снижения ее «качества») при переходе из одной формы в другую. В соответствии с этим законом энергия теряется при дыхании организмов и и вследствие расходов на поддержание жизнедеятельности симбиотрофов, а также при передаче ее по пищевым цепям.

   На рис. 22 показана обобщенная схема протекания энергии через экосистему. Вся энергия, поступающая в экосистему и фиксирующаяся в процессе фотосинтеза, постепенно рассеивается при дыхании продуцентов и консументов разных уровней и жизнедеятельности редуцентов.

Рис. 22. Схема потока энергии в экосистеме (по Уиттекеру, 1980)

   Контрольные вопросы

   1. Что такое энергия?   2. Какое количество солнечной энергии может усвоить экосистема?   3. Что такое пищевая цепь?   4. Что такое трофический уровень?   5. Приведите примеры пастбищных и детритных пищевых цепей.   6. Из какого числа звеньев состоят пищевые цепи в наземных и водных экосистемах?   7.

Чем отличаются понятия «пищевая цепь» и «пищевая сеть»?   8. В каких пределах меняется полнота выедания организмов на разных трофических уровнях и в разных экосистемах?   9. Как меняется эффективность усвоения энергии организмами с повышением их трофического уровня?

   10.

Проиллюстрируйте действие законов термодинамики при «работе» экосистемы.

12.2.2. Круговорот веществ в экосистеме

   Энергия в соответствии с законами термодинамики используется в экосистеме однократно и рассеивается в процессе прохождения по пищевым цепям. Вещества в соответствии с законом сохранения веществ используются многократно и совершают круговороты (рис. 23).

Рис. 23. Участие разных функциональных групп в круговороте веществ фотоавтотрофной экосистемы

   В естественных экосистемах круговороты равновесные: вещества, используемые организмами, после разложения их редуцентами возвращаются в окружающую среду и вновь используются. Если происходит естественный отток вещества из экосистемы (экосистемы рек, экосистемы на склонах, из которых вымываются минеральные вещества), то он компнесируется поступлением новых веществ.

Они приносятся потками воды, поступают в почву при выщелачиваними материнских пород и т.д.   Круговорот органического вещества в биосфере происходит в среднем за 4 года. В разных экосистемах этот показатель сильно различается: в водных экосистемах круговорот происходит в 1000— 2000 раз быстрее, чем в лесу.

Интенсивность круговоротов в естественных наземных экосистемах зависит от их продуктивности. Она максимальная в тропических лесах и минимальная в пустынях. Круговорот веществ замедляется при накоплении детрита.   Разнообразию круговоротов веществ в наземных экосистемах посвящена монография Н.А. Базилевич и А. А.

Титляновой «Биотический круговорот на пяти континентах: азот и зольные эле-менты в природных наземных экосистемах» (2008). Эта монография является уникальной сводкой о круговротах веществ в наземных экосистемах. Принципы анализа круговоротов веществ хорошо раскрывает две приведенные ниже цитаты.

   «Биотический круговорот в целом – это циклы отдельных элементов, связанные между собой количественными отношениями. Ведущим является цикл органического углерода, который приводит в движение все остальные циклы.

Связь между циклами углерода, азота и зольных элементов заключается прежде всего в том, что для построения единицы чистой продукции требуется определенное (и разное для различных растений) количество N, P, K, S и других зольных элементов. Недостаток любого из перечисленных элементов может ограничивать уровень NPP (чистой первичной биологической продукции, Б.М. и Л.Н.

) и являться лимитирующим фактором продукционного процесса» (с. 15).   «В экосистемах, абсолютно разных по своему флористическому составу и фитоценотической структуре, элементы питания циркулируют по одинаковым путям, подчиняясь определенным закономерностям.

Небольшое число обменных процессов, тождественных по механизмам во всех наземных экосистемах, где первичными продуцентами являются автотрофы, но идущих с разными скоростями, формируют биотический круговорот в экосистемах и с плодородными почвами и с безгумусными субстратами, и с большим и с малым количеством синузий, и одноярусных и многоярусных, и богатых и бедных видами.

Универсальность функций и разнообразие форм создают всю палитру биомов и типов экосистем в биосфере» (с. 354).

   В антропогенных экосистемах круговороты веществ неравновесные. Так, в агрэкосистемах происходит постоянный отток веществ с урожаем, животноводческой продукцией, вследствие эрозии почв и вымывания элементов питания с пашни. В результате этого происходит снижение плодородия поч. В городских экосистемах, напротив, поступление веществ во много раз (примерно в 10 раз) превышает их отток, в результате чего происходит аккумуляции твердых веществ.

   Контрольные вопросы

   1. Какие функциональные группы видов участвуют в круговороте веществ?   2. Чем обеспечивается равновесность круговоротов веществ в естественных экосистемах?

   3. В чем состоят особенности круговротов веществ в антропогенных (сельскохозяйственных и городских) экосистемах?

Page 3

12.2.3. Биологическая продукция и запас биомассы

   Биологическая продукция – скорость накопления биомассы в экосистеме, отражающая способность организмов в процессе своей жизнедеятельности производить органическое вещество.

 Биологическая продукция измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади (т/га/год, кг/м2/год, г/м2/день и т.д.).

   Различают первичную (ПБП, создаваемую растениями и другими автотрофами) и вторичную (ВБП, создаваемую гетеротро- фами) биологическую продукцию (рис. 24).

В составе первичной продукции различается валовая (ВПБП) – общая продукция фотосинтеза и чистая (ЧПБП) – «прибыль», которая остается в растениях после затрат на дыхание и выделение органического вещества из корней в почву (эти вещества используются симбио- трофами) и водорослями фитоплактона в воду (эти вещества усваиваются бактериями).

Рис. 24. Структура биологической продукции экосистемы.

   Соотношение величин ВПБП и ЧПБП зависит от условий среды и типа экосистемы, тем не менее в среднем оно составляет 2:1 (чистая продукция составляет 50% от валовой).   Р. Уиттекер (1980) по первичной биологической продукции (в сухом веществе) разделяет экосистемы на четыре класса:   1) очень высокая (свыше 2 кг/м2/год).

Такая продукция характерна для влажных тропических лесов, плавней – высоких и густых зарослей тростника в дельтах Волги, Дона и Урала;   2) высокая (1-2 кг/м2/год). Это липово-дубовые леса, прибрежные заросли рогоза или тростника на озере, посевы кукурузы и многолетних трав, если производится орошение и внесение минеральных удобрений;   3) умеренная (0,25-1 кг/м /год).

Преобладающая часть сельскохозяйственных посевов, сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера, «морские луга» из водорослей;   4) низкая (менее 0,25 кг/м /год).

Это пустыни жаркого климата, арктические пустыни островов Северного Ледовитого океана, тундры, полупустыни Прикаспия, вытоптанные скотом степные пастбища с низким и редким травостоем, каменистые степи. Такую же низкую продукцию имеет большинство морских экосистем зоны пелагиали (см. разд. 13.1.2).

   Средняя биологическая продукция экосистем Земли не превышает 0,3 кг/м /год, так как на планете преобладают низкопродуктивные экосистемы пустынь и океанов.   Биомасса – это запас (количество) живого органического вещества (растений, животных, грибов, бактерий), «капитал» экосистемы, который разделяется на фитомассу (массу растений), зоомассу (массу животных), микробную массу.

Средняя величина биомассы на единице поверхности суши составляет 0,5 кг/га.   Основной химический элемент в биомассе – углерод, 1 г органического углерода соответствует в среднем 2,4 г сухой биомассы. В биомассе на 100 частей углерода приходится 15 частей азота и 1 часть фосфора.

Однако соотношения углерода и азота различаются в биомассе животных и растений, чем и объясняется их разное качество как пищевого ресурса (см. 2.2.1).   Кроме углерода, азота и фосфора в биомассе содержится много кислорода, водорода и серы. (Вспомните слово «CHNOPS», см. 2.2.1).

Поскольку длительность жизни разных организмов различна, то биомасса может быть больше годичной продукции (в лесах – в 50 раз, в степи – в 3-5 раз), равна ей (в сообществах культурных однолетних растений) или меньше (в водных экосистемах, где преобладают короткоживущие организмы планктона, дающие несколько поколений за год).

   Обычно биомасса растений больше биомассы животных, хотя из этого правила есть исключения. Например, в водоемах масса зоопланктона может быть больше массы фитопланктона, так как жизнь водорослей фитопланктона менее продолжительна, чем жизнь организмов зоопланктона (за время жизни планктонного рачка может смениться до 4 поколений водорослей).

   Крупный лимнолог (исследователь экосистем озер) Г.Г. Вин- берг рассчитал поток энергии в экосистеме эвтрофного (т.е. с большим количеством элементов минерального питания в воде) озера. Он определил соотношение продукции (П) и биомассы (Б) для всех основных участников «эстафеты энергии» в этих экосистемах.

У бактериопланктона соотношение П/Б составляет 61, фитопланктона – 22, фильтраторов зоопланктона – 20, плотоядного зоопланктона – 9, организмов бентоса – 3, крупных моллюсков, таких, как перловица, – 0,3, рыб – 0,3-0,4.

   Соотношения величин биологической продукции, биомассы и численности организмов разных трофических уровней отражаются экологическими пирамидами. Экологические пирамиды биологической продукции любых экосистем и биомассы наземных экосистем всегда имеют широкое основание и сужаются с повышением трофического уровня. Пирамиды биомассы водных экосистем могут иметь форму юлы (рис. 25): максимальная биомасса сосредоточена в среднем трофическом уровне зоопланктона, организмы которого живут дольше, чем одноклеточные водоросли фитопланктона. На высших уровнях нектона (рыб) также происходит снижение биомассы.

Рис. 25. Экологические пирамиды биомассы наземной (сверху) и водной (снизу) экосистем.

   В структуре биомассы различают биомассу надземной и подземной частей экосистемы. В большинстве экосистем подземная биомасса растений превышает надземную, причем у луговых сообществ в 3-10 раз, в степных в 5-7, в пустынных в 20-100 раз.

Исключение составляют леса, где надземная биомасса значительно превышает подземную. В агроценозах надземная и подземная биомасса могут быть примерно равными, а в лесах надземная биомасса превышает подземную.

Подземная биомасса животных всегда во много раз больше, чем надземная.

   Контрольные вопросы

   1. Что такое первичная и вторичная биологическая продукция?   2. Как различается величина первичной и вторичной биологической продукции в разных экосистемах?   3. В каких пределах меняется биологическая продукция разных экосистем?   4. Какова средняя величина биологической продукции экосистем Земли?   5. Сравните понятия «биологическая продукция» и «биомасса».   6.

Как меняется соотношение биологической продукции и биомассы в разных экосистемах?   7. Каков усредненный химический состав биомассы планеты?   8. Что такое экологическая пирамида? Какие варианты экологических пирамид Вы знаете?   9. Сравните экологические пирамиды наземной и водной экосистемы.

   10.

С какой скоростью происходит круговорот биомассы в разных экосистемах?

Page 4

12.3. Функциональная роль биоты экосистемы
12.3. Функциональная роль биоты экосистемы   Экосистема – это в первую очередь явление функциональное, которое оценивается по интенсивности потока энергии, протекающей через нее, характеру круговоротов веществ, величине биологической продукции (первичной и вторичной) и накопленной биомассы. Важнейшую роль в функционировании экосистемы играет биота – ее живое население.12.3.1. Состав биоты (биоразнообразие) экосистемы12.3.2. Связь биоразнообразия с функциональными параметрами экосистемы

 

Источник: https://yourlib.net/content/view/12033/142/

Пищевые цепи и сети. Трофические уровни и поток энергии в экосистеме

Энергия в экосистеме. Пищевые цепи и пищевые сети

Существование любого биоценоза возможно только при постоянном притоке энергии. По существу, вся жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в химические связи органических веществ (химическую энергию).

Гетеротрофы получают энергию с пищей. Все живые существа являются объектами питания других живых существ, т. е. связаны между собой вещественноэнергетическими отношениями. Пищевые связи в сообществах — это механизм передачи энергии от одного организма к другому или другим.

Питаясь друг другом, живые организмы образуют пищевую цепь –последовательность организмов, по которой энергия, заключенная в пище, передается от ее первоначального источника. Различают два типа пищевых цепей (рис. 3).

Цепи выедания (или пастбищные) – пищевые цепи, начинающиеся с живых фотосинтезирующих организмов. Например: фитопланктон → зоопланктон → рыбы-микрофаги → рыбы-макрофаги → птицы-ихтиофаги.

Цепи разложения (или детритные) – пищевые цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных. Например: детрит → детритофаги → хищники микрофаги → хищники макрофаги.

Таким образом, поток энергии, проходящий через экосистему, как бы разбивается на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мертвого органического вещества.

В каждом сообществе пищевые цепи сложным образом переплетаются и образуют пищевые сети, так как организмы любого вида являются потенциальными объектами для пищи многих других видов.

Например, врагами тлей служат личинки и жуки божьих коровок, личинки мух, пауки, насекомоядные птицы и многие другие животные. За счет дубов в лиственных лесах могут жить несколько сотен форм различных членистоногих, паразитических грибков и т.д.; хищники обычно легко переключаются с одного вида пищи на другой.

Некоторые хищники могут потреблять в определенной мере и растительную пищу. Пищевые сети в биоценозах очень сложны. Однако первое впечатление о том, что энергия в трофических сетях может долго мигрировать от одного организма к другому, обманчиво.

На самом деле путь каждой конкретной порции энергии, накопленной растениями, короток, он может передаваться не более чем через 4 – 5 звеньев, состоящих из последовательно питающихся друг другом организмов.

Рис.3. Модель потока энергии, показывающая связь между пастбищной и детритной пищевыми цепями

Место каждого звена в цепи питания называют трофическим уровнем.

Первый трофический уровень – это всегда продуценты, растения – создатели органического вещества, биомассы; второй трофический уровень составляют травоядные животные – потребители, или консументы первого порядка; потребители травоядных животных – плотоядные – составляют следующий трофический уровень и являютсяконсументами второго порядка; потребители плотоядных форм относятся к консументам третьего порядка и т.д. При этом имеет значение пищевая специализация организмов-консументов. Виды с широким спектром питания могут включаться в пищевую цепь на разных трофических уровнях. Например, человек, в рацион которого входят и растительная и животная пища, может в разных пищевых цепях быть консументом первого, второго и третьего порядков.

Количество энергии, расходуемой на поддержание организмом собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью.

Неусвоенная пища вновь возвращается во внешнюю среду в виде экскрементов и в последующем может быть вовлечена в другие цепи питания. Процент усвояемости зависит от состава пищи и набора пищеварительных ферментов организма.

У животных усвояемость варьирует в пределах от 12 – 20 % (у некоторых детритофагов) до 75 % (у плотоядных видов).

Большая часть усвоенной пищи разрушается с высвобождением химической энергии, которая обеспечивает все функции организма (его жизнедеятельность) и теряется в конце концов в виде выделяемого телом тепла (тепловой энергии).

Процесс окисления органических веществ кислородом, содержащимся в воздухе, происходящий на уровне клетки с выделением энергии, необходимой для жизнедеятельности, называется клеточным дыханием.

В целом он противоположен фотосинтезу:

С6Н12О6 + 6О2 → 6СО2 + 6Н2О + химическая энергия.

Меньшая часть усвоенной энергии идет собственно на ассимиляцию,

т.е. на образование тканей, биомассы самого организма или на запасание питательных веществ. Обычно продуктивность каждого последующего трофического уровня составляет 5 – 20 % от продуктивности предыдущего.

Траты на дыхание во много раз больше энергетических затрат на увеличение массы организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особи.

У молодых особей траты на рост достигают больших величин, тогда как взрослые используют энергию пищи в основном на поддержание обмена веществ и созревание половых клеток.

Таким образом, большая часть энергии в цепи питания при переходе с одного уровня на другой теряется. К следующему звену в цепи питания поступает только та энергия, которая заключена в массе предыдущего поедаемого звена (около 10 %).

Р. Линдеман (1942) [9] сформулировал правило десяти процентов, согласно которому с одного трофического уровня переходит на другой, более высокий уровень (по «лестнице» продуцент – консумент – редуцент), в среднем около 10 % энергии, поступившей на предыдущий уровень.

Потери энергии составляют около 90 % при каждом переходе через трофическую цепь.

Например, если энергия растительного организма составляет 1000 Дж, то при полном поедании его травоядным животным в теле последнего ассимилируется всего 100 Дж, в теле хищника 10 Дж, а если этот хищник будет съеден другим, то в его теле ассимилируется только 1 Дж энергии, т.е. 0,1 %.

В результате энергия, накопленная зелеными растениями в цепях питания, стремительно иссякает. Поэтому пищевая цепь не может включать более 4 – 5 звеньев. Добавим, что растения связывают в процессе фотосинтеза в среднем лишь 1 – 5 % энергии солнечного света.

Потерянная в цепях питания энергия может быть восполнена только за счет поступления новых ее порций. В экосистемах не может быть круговорота энергии, подобного круговороту веществ. Жизнь и функционирование любой экологической системы возможны только при однонаправленном потоке солнечной энергии, преобразованной автотрофами в форму химической энергии и передаваемой гетеротрофам.

Все биологические процессы в экосистемах подчиняются законам термодинамики – науки о превращениях одних видов энергии и работы в другие. Первый закон термодинамики (закон сохранения энергии) постулирует, что энергия не возникает и не исчезает, а лишьпереходит из одной формы в другую.

В экосистеме солнечная энергия превращается в химическую энергию (энергию химических связей органических веществ), большая часть которой используется живыми организмами для жизнедеятельности (совершения работы, начиная с уровня клетки).

Согласно одной из формулировок второго закона термодинамики, при любых превращениях энергии (или совершении работы) часть ее теряется в виде тепла.

Поэтому в экосистеме при передаче энергии с одного трофического уровня на другой происходят большие потери энергии в виде тепла, которое рассеивается в окружающей среде, и только 10 % энергии от первоначального количества передается по пищевой цепи.

В отличие от энергии, которая при переходе на более высокий трофический уровень десятикратно теряется, токсичные и радиоактивные вещества примерно в такой же пропорции накапливаются, т. е. их концентрация десятикратно увеличивается. Этот факт зафиксирован в правиле биологического усиления, справедливого для всех биоценозов.



Источник: https://infopedia.su/18x32b3.html

Книга: Естествознание и основы экологии

Энергия в экосистеме. Пищевые цепи и пищевые сети

Для существования живых организмов необходимы энергия и питательные вещества. Автотрофы  трансформируют лучистую энергию Солнца в процессе фотосинтеза, синтезируя из углекислого газа и воды органические вещества.

Гетеротрофы  используют эти органические вещества в процессе питания, разлагая их в конечном счете вновь до углекислого газа и воды, а накопленная в них энергия расходуется на различные процессы жизнедеятельности организмов. Таким образом, световая энергия Солнца переходит в химическую энергию органических веществ, а далее в механическую и тепловую.

Все живые организмы в экологической системе по типу питания можно разделить на три функциональные группы – продуценты, консументы, редуценты.

1. Продуценты  – это зеленые растения-автотрофы, производящие органические вещества из неорганических и способные аккумулировать солнечную энергию.

2.

 Консументы  – это животные-гетеротрофы, потребляющие готовые органические вещества. Консументы I порядка могут использовать органические вещества растений (травоядные животные).

Гетеротрофы, использующие животную пищу, подразделяются на консументы II, III порядков и т. д. (плотоядные животные).

Все они используют энергию химических связей, запасенную в органических веществах продуцентами.

3. Редуценты  – это гетеротрофные микроорганизмы, грибы, разрушающие и минерализующие органические остатки. Таким образом, редуценты как бы заканчивают круговорот веществ, образуя неорганические вещества для вступления в новый цикл.

Солнце обеспечивает постоянный приток энергии, а живые организмы в конечном счете рассеивают ее в виде тепла.

В процессе жизнедеятельности организмов происходит постоянный круговорот энергии и веществ, причем каждый вид использует лишь часть содержащейся в органических веществах энергии.

В результате возникают цепи питания  – трофические цепи, пищевые цепи,  представляющие собой последовательность видов, извлекающих органические вещества и энергию из исходного пищевого вещества, при этом каждое предыдущее звено становится пищей для следующего (рис. 98).

Рис. 98.  Общая схема пищевой цепи

В каждом звене большая часть энергии расходуется в виде тепла, теряется, что ограничивает число звеньев в цепи. Но большинство цепей начинается растением, а заканчивается хищником, причем наиболее крупным. Редуценты разрушают органические вещества на каждом уровне и являются конечным звеном в пищевой цепи.

В связи с уменьшением энергии на каждом уровне идет уменьшение и биомассы. Трофическая цепь обычно имеет не более пяти уровней и представляет собой экологическую пирамиду, с широким основанием внизу и сужающуюся кверху (рис. 99).

Рис. 99.  Упрощенная схема экологической пирамиды биомассы (1) и пирамиды чисел (2)

Правило экологической пирамиды  отражает закономерность, согласно которой в любой экосистеме биомасса каждого следующего звена в 10 раз меньше предыдущего.

Различают три типа экологических пирамид:

– пирамиду, отражающую число особей на каждом уровне пищевой цепи, – пирамида чисел;

– пирамиду биомассы органического вещества, синтезированного на каждом уровне, – пирамида массы  (биомассы);

– пирамиду энергии,  показывающей величину потока энергии. Обычно цепь питания состоит из 3–4 звеньев:

растение → заяц → волк;

растение → полевка → лисица → орел;

растение → гусеница → синица → ястреб;

растение → суслик → гадюка → орел.

Однако в реальных условиях в экосистемах различные цепи питания перекрещиваются между собой, образуя разветвленные сети. Почти все животные, за исключением редких специализированных видов, используют разнообразные источники пищи. Поэтому при выпадении одного звена в цепи не происходит нарушения в системе. Чем больше видовое разнообразие и богаче пищевые сети, тем устойчивее биоценоз.

В биоценозах различают два типа трофических сетей: пастбищную и детритную.

1.  В пастбищном типе пищевой сети  поток энергии идет от растений к растительноядным животным, а далее к консументам более высокого порядка. Это сеть выедания.  Вне зависимости от величины биоценоза и места обитания растительноядные животные (наземные, водные, почвенные) пасутся, выедают зеленые растения и передают энергию на следующие уровни (рис. 100).

Рис. 100.  Пастбищная сеть питания в наземном биоценозе

2.

 Если поток энергии начинается с мертвых растительных и животных остатков, экскрементов и идет к первичным детритофагам  – редуцентам,  частично разлагающим органические вещества, то такая трофическая сеть называется детритной,  или сетью разложения  (рис. 101). К первичным детритофагам относятся микроорганизмы (бактерии, грибы), мелкие животные (черви, личинки насекомых).

Рис. 101.  Детритная пищевая цепь

В наземных биогеоценозах присутствуют оба типа трофической цепи. В водных сообществах преобладает цепь выедания. И в том и в другом случае энергия используется полностью.

Трофические цепи составляют основу взаимосвязей в живой природе, но пищевые связи – это не единственный вид взаимоотношений между организмами.

Одни виды могут участвовать в распространении, размножении, расселении других видов, создавать соответствующие условия для их существования.

Все многочисленные и разнообразные связи между живыми организмами и окружающей средой обеспечивают существование видов в устойчивой, саморегулирующейся экосистеме.

Природные биоценозы очень сложны. В них всегда имеются многочисленные сложно переплетенные сети питания, разнообразные виды живых организмов, взаимодействующие между собой определенным образом.

Биоценозы характеризуются прежде всего видовым разнообразием и плотностью популяций.

Видовое разнообразие  – это число видов живых организмов, образующих биоценоз и определяющих различные пищевые уровни в нем.

Число видов, обитающих в данном сообществе, характеризует его видовое богатство и качественный состав.

Численность видовых популяций (плотность)  определяется количеством особей данного вида на единице площади.

Некоторые виды являются доминантными  в сообществе, превосходя по численности остальные виды.

Если в сообществе доминирует несколько видов, а плотность остальных очень мала, то разнообразие низкое. Если при том же видовом составе численность каждого вида значительна, то видовое разнообразие высокое. Биоценоз характеризуется не только видовым разнообразием, но и соотношением видов, имеющих различные типы питания, их приспособленностью к данной экологической нише.

 Экологическая структура  сообщества определяется соотношением групп организмов, занимающих определенные экологические ниши и выполняющих одинаковые функции в сообществе. Сходство структуры экосистем позволяет выделять одинаковые типы биомов на разных континентах: тропический лес, пустыня, степь, саванна, широколиственный лес и т. д.

Они определяются не видовым сходством растений и животных, а присутствием организмов, имеющих сходный образ жизни, занимающих одинаковые экологические ниши и выполняющих сходные функции. Например, в степях наиболее распространены засухоустойчивые злаки, растительноядные животные.

В саваннах Африки доминируют разнообразные копытные, а в Австралии их заменяют кенгуру.

Виды, занимающие сходные экологические ниши в однотипных сообществах, называются экологическими двойниками,  или эквивалентами.

 Тип биоценоза  определяется характером растительности – особенностями фитоценозов, которые, в свою очередь, определяют животный мир биоценоза.

В зависимости от доминирующих жизненных форм растений различают биоценозы лесов, лугов, болот, степей и т. д.

Совместное существование в биоценозе различных видов и жизненных форм приводит к пространственному разграничению, которое выражается в ярусности фитоценоза.

Ярусы  – это горизонтальные слои – «этажи», в которых располагаются растения. В биоценозах обычно бывает от двух до шести ярусов. Луг, степь, болото относятся к малоярусным сообществам (два-три яруса), лес – к многоярусному (пять-шесть). В верхнем ярусе смешанного леса (рис. 102) располагаются высокие светолюбивые деревья.

Второй ярус образуют низкорослые, менее светолюбивые деревья и высокие кустарники. В третьем ярусе располагаются кустарники и полукустарники, четвертый и пятый ярусы занимают травянистые растения. Ярусность растений обеспечивает лучшее использование ресурсов среды – света, влаги, питательных веществ почвы.

Подземная ярусность определяется расположением корневых систем. Глубже всего обычно проникают корни деревьев. В верхних слоях почвы размещаются корни травянистых растений; мхи, лишайники располагаются прямо в подстилке.

Ярусность уменьшает конкуренцию растений, способствует увеличению видового разнообразия, равномерному расселению в биоценозе животных.

Рис. 102.  Ярусность в биоценозе: I–VI ярусы

Биоценоз характеризуется не только видовым составом, но и биомассой и биологической продуктивностью.

Биомасса  – это общее количество органического вещества и заключенной в ней энергии всех особей данной популяции или всего биоценоза на единицу площади. Биомасса определяется количеством сухого вещества на 1 га.

Величина биомассы зависит от особенностей вида, его биологии. Например, биомасса быстроотмирающих видов (микроорганизмов) невелика по сравнению с биомассой долгоживущих организмов, накапливающих в своих тканях большое количество органических веществ (деревья, кустарники, крупные животные).

Биологическая продуктивность  – это скорость образования биомассы в единицу времени.

Это наиболее важный показатель жизнедеятельности организма, популяции и экосистемы в целом. Различают первичную продуктивность  – образование органического вещества автотрофами (растениями в процессе фотосинтеза) и вторичную продуктивность  – скорость образования биомассы гетеротрофами (консументами и редуцентами).

Соотношение продуктивности и биомассы различно у разных организмов. Неодинакова и продуктивность различных экосистем, она зависит от величины солнечной радиации, почвы, климата.

Самой низкой биомассой и продуктивностью обладают пустыни и тундры, самой высокой – дождевые тропические леса. Биомасса Мирового океана значительно меньше, чем у суши, хотя он занимает 71 % поверхности планеты.

§ 72. Поток энергии в экосистемах и пищевые цепи§ 74. Разнообразие биоценозов

Источник: https://ours-nature.ru/b/book/11/page/10-9-osnovi-ekologii/6-72-potok-energii-v-ekosistemah-i-pischevie-tsepi

3 Поток энергии в экосистемах

Энергия в экосистеме. Пищевые цепи и пищевые сети

Поддержаниежизнедеятельности организмов и круговоротвещества в экосистемах, т. е. существованиеэкосистем, зависит отпостоянного притока энергии, необходимойвсем организмам дляих жизнедеятельности и самовоспроизведения(рис. 2).

Рис.2 – Потокэнергиивэкосистеме(поФ.Рамаду,1981)

Вотличие от веществ, непрерывноциркулирующих по разным блокам экосистемы,которые всегда могут повторноиспользовать­ся,входить в круговорот, энергияможет быть использована только раз,т. е. имеет место линейный поток энергиичерез экосистему (поток энергииоднонаправлен и необратим).

Одностороннийприток энергии как универсальное явлениеприродыпроисходит в результате действия законовтермодина­мики.Первыйзаконгласит,что энергия может превращаться из однойформы (например, света) в другую (например,потенци­альнуюэнергию пищи), но не может быть созданаили уничтоже­на.

Второйзаконутверждает,что не может быть ни одного про­цесса,связанного с превращением энергии, безпотерь некото­ройее части. Определенное количествоэнергии в таких превращенияхрассеивается в недоступную тепловуюэнергию, а, следовательно,теряется.

Отсюда не может быть превращений,к примеру,пищевых веществ в вещество, из которогосостоит тело организма,идущих со 100-процентной эффективностью.

Такимобразом, живые организмы являютсяпреобразовате­лямиэнергии. И каждый раз, когда происходитпревращение энергии,часть ее теряется в виде тепла. В конечномитоге вся энергия, поступающаяв биотический круговорот экосистемы,рассеивается в виде тепла. Живые организмыфактически не используют тепло какисточник энергии для совершения работы- они ис­пользуют свет и химическуюэнергию.

4 Пищевые цепи и сети, трофические уровни

Пищевыесвязи– это ме­ханизмыпередачи энергии от одного организмак другому.

Типичныйпример: живот­ное поедает растения.Это жи­вотное, в свою очередь, можетбыть съедено другим живот­ным. Такимпутем может про­исходитьперенос энергии через рядорганизмов – каждый пос­ледующийпитается предыду­щим, поставляющимему сырье и энергию.

Такаяпоследовательность переноса энергииназывается пищевой(трофической) це­пью,илицепью питания.

Пищевойцепьюназывается перенос энергии, заключеннойв растительной пище, через ряд организмовв процессе их поедания друг другом.

Пищевыесети образуются потому, что практическилюбой член какой либо пищевой цепиодновременно является звеном и в другойпищевой цепи: он потребляет, и егопотребляют несколько видов другихорганизмов.

Обычно различаюттри типа пищевых цепей

Пищеваяцепь хищ­никовначинается с растений и переходит отмелких организмов к организмамвсе более крупных размеров. На сушепищевые цепи состоят из трех-четырехзвеньев.

Одна из простейшихпищевых цепей имеет вид:

Растение  заяц  волк продуцент  травоядное  плотоядное

Широко распространеныи такие пищевые цепи:

растительныйматериал (например, нектар) муха паук землеройка сова.

сокрозового куста тля божья коровка паук насекомоядная птица хищная птица.

Вводных и, в частности, морских экосистемахпищевые цепи хищников,как правило, длиннее, чем в наземных.

Второйтиппищевых цепей, начинающихся сфотосинтезирующих организмов, носитназвание пастбищных(илицепи выедания,или цепи потребления).

Третийтиппищевых цепей, начинающихся с отмершихос­татков растений, трупов и экскрементовживотных, относят к детритным(сапрофитным)пищевымцепям илик детритнымцепям разложения.

Вдетритных пищевых цепях наземныхэкосистем важную роль играют лиственныелеса, большая часть листвы которых неупотребляется в пищу травояднымиживотными и входит в состав подстилкииз опавших листьев.

Листья измельчаютсямногочисленными детритофагами – грибами,бактериями, насекомыми (например,коллембола) и т. д.,

Благодаряопределенной последовательности пищевыхотношений различают отдельные трофическиеуровни переноса веществ и энергии вэкосистеме, связанные с питаниемопределенной группы организмов.

Так,первыйтрофический уровеньво всех экосистемах образуют продуценты– растения; второй– первичные консументы(травоядные животные); третий– вторичные консументы(хищники, поедающие травоядных); могутприсутствовать и хищники, поедающиепервых хищников – третичные консументы,расположенные на четвертом уровне.

Т.о., организмыполучающие свою энергию от Солнца черезодинаковое число ступеней, принадлежатк одному трофическому уровню, т.е. этосовокупность организмов, занимающихопределенное положение в общей цепипитания.

Источник: https://studfile.net/preview/3897608/page:3/

Самая удобная и увлекательная подготовка к ЕГЭ

Энергия в экосистеме. Пищевые цепи и пищевые сети

Живые организмы находятся между собой и абиотическими условиями среды обитания в определённых отношениях, образуя тем самым так называемые экологические системы.

Биоценоз — совокупность популяций разных видов, обитающих на определённой территории. Растительный компонент биоценоза называется фитоценозом, животный — зооценозом, микробный — микробоценозом.

Ведущим компонентом в биоценозе является фитоценоз. Он определяет, каким будет зооценоз и микробоценоз.

Биотоп — определённая территория со свойственными ей абиотическими факторами среды обитания (климат, почва).

Биогеоценоз — совокупность биоценоза и биотопа.

Экосистема — система живых организмов и окружающих их неорганических тел, связанных между собой потоком энергии и круговоротом веществ.

Термин экосистема был предложен английским учёным А. Тенсли (1935), а термин биогеоценоз — российским учёным В. Н. Сукачевым (1942). «Экосистема» и «биогеоценоз» — понятия близкие, но не синонимы.

Биогеоценоз — это экосистема в границах фитоценоза. Экосистема — понятие более общее. Каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Единая экосистема нашей планеты называется биосферой.

Биосфера — экосистема высшего порядка.

Структура и функционирование экосистем

Различают видовую, пространственную и экологическую структуры биоценоза.

Видовая структура — число видов, образующих данный биоценоз, и соотношение их численности или массы. То есть видовая структура биоценоза определяется видовым разнообразием и количественным соотношением числа видов или их массы между собой.

Пространственная структура — распределение организмов разных видов в пространстве (по вертикали и по горизонтали). Пространственная структура образуется, прежде всего, растительной частью биоценоза. Различают ярусность (вертикальная структура биоценоза) и мозаичность (структура биоценоза по горизонтали).

Экологическая структура — соотношение организмов разных экологических групп. Биоценозы со сходной экологической структурой могут иметь разный видовой состав. Это связано с тем, что одни и те же экологические ниши могут быть заняты сходными по экологии, но далеко не родственными видами. Такие виды называются замещающими, или викарирующими.

Любая популяция занимает определённое местообитание и определённую экологическую нишу. Местообитание — это территория, занимаемая популяцией, с комплексом присущих ей экологических факторов.

Экологическая ниша — место популяции в природе, включающее не только положение вида в пространстве, но и функциональную роль его в сообществе (например, трофический статус) и его положение относительно абиотических условий существования (температуры, влажности и т. п.).

Местообитание — это как бы «адрес» организма, а экологическая ниша — это его «профессия».

Функциональные группы организмов в экосистеме

ГруппаХарактеристикаОрганизмы
ПродуцентыАвтотрофные организмы, способные производить органические вещества из неорганических, используя фотосинтез или хемосинтезРастения и автотрофные бактерии
КонсументыГетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументовЖивотные, гетеротрофные растения, некоторые микроорганизмы
РедуцентыГетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минеральных веществСапротрофные бактерии и грибы

Пищевые цепи и сети. Питаясь друг другом, живые организмы образуют цепи питания.

Цепь питания — последовательность организмов, по которой передаётся энергия, заключённая в пище, от её первоначального источника. Каждое звено цепи называется трофическим уровнем.

В пищевой цепи редко бывает больше 4–5 трофических уровней.

Трофические уровни в цепи питания

УровеньГруппа организмовОрганизмы
ПервыйПродуцентыАвтотрофные организмы, преимущественно зелёные растения
ВторойКонсументы первого порядкаРастительноядные животные
ТретийКонсументы второго порядкаПервичные хищники, питающиеся растительноядными животными
ЧетвёртыйКонсументы третьего порядкаВторичные хищники, питающиеся плотоядными животными
ПоследнийРедуцентыСапротрофные бактерии и грибы, осуществляющие минерализацию — превращение органических остатков в неорганические вещества

Типы пищевых цепей

ТипХарактеристикаПримеры
Цепи выедания (или пастбищные)Пищевые цепи, начинающиеся с живых фотосинтезирующих организмовФитопланктон → зоопланктон → рыбы микрофаги → рыбы макрофаги → птицы ихтиофаги
Цепи разложения (или детритные)Пищевые цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животныхДетрит → детритофаги → хищники микрофаги → хищники макрофаги

Таким образом, поток энергии, проходящий через экосистему, разбивается как бы на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мертвого органического вещества. Цепи выедания преобладают в водных экосистемах, цепи разложения — в экосистемах суши.
В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых, в свою очередь, может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, многие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме.

Поток энергии и круговорот веществ в экосистеме. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами.

Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Так осуществляется биологический круговорот веществ.


В то же время энергия не может циркулировать в пределах экосистемы. Поток энергии (передача энергии), заключенной в пище, в экосистеме осуществляется однонаправлено от автотрофов к гетеротрофам.

При передаче энергии с одного трофического уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинамики) и только около 10 % от первоначального количества передаётся по пищевой цепи.

В результате пищевые цепи можно представить в виде экологических пирамид. Различают три основных типа экологических пирамид.

Пирамида чисел (а) показывает, что если бы мальчик питался в течение одного года только телятиной, то для этого ему потребовалось бы 4,5 телёнка, а для пропитания телят необходимо засеять поле в 4 га люцерной, что составит 2 х 107 растений. В пирамиде биомасс (б) число особей заменено их биомассой. В пирамиде энергии (в) учтена солнечная энергия.

Люцерна использует 0,24 % солнечной энергии. Для накопления продукции телятами в течение года используется 8 % энергии, аккумулированной люцерной. На развитие и рост ребёнка в течение года используется 0,7 % энергии, аккумулированной телятами.

В результате чуть более одной миллионной доли солнечной энергии, падающей на поле в 4 га, используется для пропитания ребёнка в течение одного года.

Пирамида чисел (пирамида Элтона) отражает уменьшение численности организмов от продуцентов к консументам.

Пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана имеет перевёрнутый характер, что связано с быстрым потреблением фитопланктона консументами.

Пирамида энергии (продукции) имеет универсальный характер и отражает уменьшение количества энергии, содержащейся в продукции, создаваемой на каждом следующем трофическом уровне.

Прирост биомассы в экосистеме, созданной за единицу времени, называется биологической продукцией (продуктивностью). Различают первичную и вторичную продукцию сообщества.
Первичная продукция — биомасса, созданная за единицу времени продуцентами. Она делится на валовую и чистую.

Валовая первичная продукция (общая ассимиляция) — это общая биомасса, созданная растениями в ходе фотосинтеза. Часть её расходуется на поддержание жизнедеятельности растений — траты на дыхание (40–70%).

Оставшаяся часть составляет чистую первичную продукцию (чистая ассимиляция), которая в дальнейшем используется консументами и редуцентами или накапливается в экосистеме.
Вторичная продукция — биомасса, созданная за единицу времени консументами. Она различна для каждого следующего трофического уровня.

Масса организмов определённой группы (продуцентов, консументов, редуцентов) или сообщества в целом называется биомассой. Самой высокой биомассой и продуктивностью обладают тропические дождевые леса, самой низкой — пустыни и тундры.

Если в экосистеме скорость прироста растений (образования первичной продукции) выше темпов переработки её консументами и редуцентами, то это ведёт к увеличению биомассы продуцентов.

Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения, то происходит накопление мёртвого органического вещества. Это ведёт к заторфовыванию болот, образованию мощной лесной подстилки и т. п. В стабильных экосистемах биомасса остаётся постоянной, так как практически вся продукция расходуется в цепях питания.

Динамика экосистем

Изменения в сообществах могут быть циклическими и поступательными.

Циклические изменения — периодические изменения в биоценозе (суточные, сезонные, многолетние), при которых биоценоз возвращается к исходному состоянию.

Поступательные изменения — изменения в биоценозе, в конечном счёте приводящие к смене этого сообщества другим.

Сукцессия — последовательная необратимая и закономерная смена одного биоценоза (экосистемы) другим(-ой) в результате влияния природных факторов (как внешних, так и внутренних) или воздействия человека.

Последовательность сообществ, сменяющих друг друга в сукцессии, называется сукцессионный ряд, или серия. Каждая предыдущая стадия (сообщество) формирует условия для развития последующего сообщества. К сукцессиям относятся опустынивание степей, зарастание озёр и образование болот и др. (табл.)

Типы сукцессий

ТипХарактеристикаПримеры
В зависимости от участия человека
ПриродныеПроисходят под действием естественных причин, не связанных с деятельностью человекаПоявление пруда в результате деятельности бобров; восстановление биоценоза после пожара, вызванного естественными причинами
АнтропогенныеОбусловлены деятельностью человекаЭвтрофикация (зарастание) водоёма в результате попадания в него азотных и фосфорных удобрений с сельскохозяйственных полей; восстановление биоценоза после пожара, вызванного человеком
В зависимости от первоначального состояния субстрата, на котором развивается сукцессия
ПервичныеРазвиваются на субстрате, не занятом живыми организмамиРазвиваются на скалах, обрывах, застывшей лаве, сыпучих песках, отмелях, в новых водоёмах
ВторичныеПроисходят на месте уже существующих биоценозов после их нарушенияВ результате вырубки леса, пожара, распашки, осушения, орошения земель
В зависимости от причин, вызвавших сукцессию
Аутогенные (самопорождающиеся)Возникают вследствие внутренних причин (изменения среды под действием сообщества)Регулярно-периодическое выгорание калифорнийской и австралийской чапарали в результате формирования огнеопасной среды
Аллогенные (порожденные извне)Вызваны внешними причинамиОпустынивание степей в результате изменения климата (уменьшения количества осадков)

В своём развитии экосистема стремится к устойчивому состоянию. Сукцессионные изменения происходят до тех пор, пока не сформируется стабильная экосистема, производящая максимальную биомассу на единицу энергетического потока. Сообщество, находящееся в равновесии с окружающей средой, называется климаксным.

Природные экосистемы

В зависимости от природных и климатических условий можно выделить три группы и ряд типов природных экосистем (биомов). В основе классификации для наземных экосистем лежит тип естественной (исходной) растительности, для водных экосистем — гидрологические и физические особенности.
Наземные экосистемы: 1. Тундра: арктическая и альпийская. 2.

Бореальные хвойные леса. 3. Листопадный лес умеренной зоны. 4. Степь умеренной зоны. 5. Тропические злаковники и саванна. 6. Чапараль (районы с дождливой зимой и засушливым летом). 7. Пустыня: травянистая и кустарниковая. 8. Полувечнозелёный тропический лес (районы с выраженными влажным и сухим сезонами). 9. Вечнозелёный тропический дождевой лес.

Пресноводные экосистемы:

1. Лентические (стоячие воды): озера, пруды, водохранилища и др. 2. Лотические (текучие воды): реки, ручьи, родники и др. 3. Заболоченные угодья: болота, болотистые леса, марши (приморские луга).

Морские экосистемы:

1. Открытый океан (пелагическая экосистема). 2. Воды континентального шельфа (прибрежные воды). 3. Районы апвеллинга (плодородные районы с продуктивным рыболовством). 4. Эстуарии (прибрежные бухты, проливы, устья рек, лиманы, солёные марши и др.). 5. Глубоководные рифтовые зоны.

Помимо основных типов природных экосистем (биомов) различают переходные типы — экотоны. Например, лесотундра, смешанные леса умеренной зоны, лесостепь, полупустыни и др.

Антропогенные экосистемы

Агроэкосистемы (сельскохозяйственные экосистемы, агроценозы) — искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека (пашни, сенокосы, пастбища). Агроэкосистемы создаются человеком для получения высокой чистой продукции автотрофов (урожая).

В них, так же как в естественных сообществах, имеются продуценты (культурные растения и сорняки), консументы (насекомые, птицы, мыши и т. д.) и редуценты (сапротрофные грибы и бактерии). Обязательным звеном пищевых цепей в агроэкосистемах является человек.

Отличия агроценозов от естественных биоценозов: • незначительное видовое разнообразие (агроценоз состоит из небольшого числа видов, имеющих высокую численность); • короткие цепи питания; • неполный круговорот веществ (часть питательных элементов выносится с урожаем); • источником энергии является не только Солнце, но и деятельность человека (мелиорация, орошение, применение удобрений); • искусственный отбор (действие естественного отбора ослаблено, отбор осуществляет человек); • отсутствие саморегуляции (регуляцию осуществляет человек) и др. Таким образом, агроценозы являются неустойчивыми системами и способны существовать только при поддержке человека.

Урбосистемы (урбанистические системы) — искусственные системы (экосистемы), возникающие в результате развития городов и представляющие собой средоточие населения, жилых зданий, промышленных, бытовых, культурных объектов и т. д.

Источник: https://examer.ru/ege_po_biologii/teoriya/ekosistema

Трофические уровни: типы, значение, схемы и определение пищевой цепи

Энергия в экосистеме. Пищевые цепи и пищевые сети

Каждый организм должен получать энергию для жизни. Например, растения потребляют энергию солнца, животные питаются растениями, а некоторые животные питаются другими животными.

Пищевая (трофическая) цепь – это последовательность того, кто кого ест в биологическом сообществе (экосистеме) для получения питательных веществ и энергии, поддерживающих жизнедеятельность.

Отличие пищевой цепи от пищевой сети в экосистеме.

Автотрофы (продуценты)

Автотрофы – живые организмы, которые производят свою пищу, то есть собственные органические соединения, из простых молекул, таких как углекислый газ. Существует два основных типа автотрофов:

  • Фотоавтотрофы (фотосинтезирующие организмы) такие, как растения, перерабатывают энергию солнечного света для получения органических соединений – сахаров – из углекислого газа в процессе фотосинтеза. Другими примерами фотоавтотрофов являются водоросли и цианобактерии.
  • Хемоавтотрофы получают органические вещества благодаря химическим реакциям, в которых задействованы неорганические соединения (водород, сероводород, аммиак и т.д.). Этот процесс называется хемосинтезом.

Автотрофы являются основой каждой экосистемы на планете. Они составляют большинство пищевых цепей и сетей, а энергия, получаемая в процессе фотосинтеза или хемосинтеза, поддерживает все остальные организмы экологических систем. Когда речь идет об их роли в пищевых цепях, автотрофы можно назвать продуцентами или производителями.

Гетеротрофы (консументы)

Гетеротрофы, также известные как потребители, не могут использовать солнечную или химическую энергию, для производства собственной пищи из углекислого газа.

Вместо этого, гетеротрофы получают энергию, потребляя другие организмы или их побочные продукты. Люди, животные, грибы и многие бактерии – гетеротрофы. Их роль в пищевых цепях заключается в потреблении других живых организмов.

Существует множество видов гетеротрофов с разными экологическими ролями: от насекомых и растений до хищников и грибов.

Деструкторы (редуценты)

Следует упомянуть еще одну группу потребителей, хотя она не всегда фигурирует в схемах пищевых цепей. Эта группа состоит из редуцентов, организмов, которые перерабатываю мертвые органические вещества и отходы, превращаяя их в неорганические соединения.

Редуценты иногда считаются отдельным трофическим уровнем. Как группа, они питаются отмершими организмами, поступающими на различных трофических уровнях.

 (Например, они способны перерабатывать разлагающееся растительное вещество, тело недоеденной хищниками белки или останки умершего орла.

) В определенном смысле, трофический уровень редуцентов проходит параллельно стандартной иерархии первичных, вторичных и третичных потребителей. Грибы и бактерии являются ключевыми редуцентами во многих экосистемах.

Редуценты, как часть пищевой цепи, играют важную роль в поддержании здоровой экосистемы, поскольку благодаря им, в почву возвращаются питательные вещества и влага, которые в дальнейшем используется продуцентами.

Уровни пищевой (трофической) цепи

Схема уровней пищевой (трофической) цепи

Пищевая цепь представляет собой линейную последовательность организмов, которые передают питательные вещества и энергию начиная с продуцентов и к высшим хищникам.

Трофический уровень организма – это положение, которое он занимает в пищевой цепи.

Первый трофический уровень

Пищевая цепь начинается с автотрофного организма или продуцента, производящего собственную пищу из первичного источника энергии, как правило, солнечной или энергии гидротермальных источников срединно-океанических хребтов. Например, фотосинтезирующие растения, хемосинтезирующие бактерии и археи.

Второй трофический уровень

Далее следуют организмы, которые питаются автотрофами. Эти организмы называются растительноядными животными или первичными потребителями и потребляют зеленые растения. Примеры включают насекомых, зайцев, овец, гусениц и даже коров.

Третий трофический уровень

Следующим звеном в пищевой цепи являются животные, которые едят травоядных животных – их называют вторичными потребителями или плотоядными (хищными) животными (например, змея, которая питается зайцами или грызунами).

Четвертый трофический уровень

В свою очередь, этих животных едят более крупные хищники – третичные потребители (к примеру, сова ест змей).

Пятый трофический уровень

Третичных потребителей едят четвертичные потребители (например, ястреб ест сов).

Каждая пищевая цепь заканчивается высшим хищником или суперхищником – животным без естественных врагов (например, крокодил, белый медведь, акула и т.д.). Они являются “хозяевами” своих экосистем.

Когда какой-либо организм умирает, его в конце концов съедают детритофаги (такие, как гиены, стервятники, черви, крабы и т.д.), а остальная часть разлагается с помощью редуцентов (в основном, бактерий и грибов), и обмен энергией продолжается.

Стрелки в пищевой цепи показывают поток энергии, от солнца или гидротермальных источников до высших хищников. По мере того, как энергия перетекает из организма в организм, она теряется на каждом звене цепи. Совокупность многих пищевых цепей называется пищевой сетью.

Положение некоторых организмов в пищевой цепи может варьироваться, поскольку их рацион отличается. Например, когда медведь ест ягоды, он выступает как растительноядное животное. Когда он съедает грызуна, питающегося растениями, то становиться первичным хищником.

Когда медведь ест лосося, то выступает суперхищником (это связано с тем, что лосось является первичным хищником, поскольку он питается селедкой, а она ест зоопланктон, который питается фитопланктоном, вырабатывающим собственную энергию благодаря солнечному свету).

Подумайте о том, как меняется место людей в пищевой цепи, даже часто в течение одного приема пищи.

Пастбищная пищевая цепь

Схема пастбищной пищевой цепи

Этот тип пищевой цепи начинается с живых зеленых растений, предназначенных для питания растительноядных животных, которыми питаются хищники. Экосистемы с таким типом цепи напрямую зависят от солнечной энергии.

Таким образом, пастбищный тип пищевой цепи зависит от автотрофного захвата энергии и перемещения ее по звеньям цепи. Большинство экосистем в природе следуют этому типу пищевой цепи.

Примеры пастбищной пищевой цепи:

  • Трава → Кузнечик → Птица → Ястреб;
  • Растения → Заяц → Лиса → Лев.

Детритная пищевая цепь

Схема детритной пищевой цепи

Этот тип пищевой цепи начинается с разлагающегося органического материала – детрита – который употребляют детритофаги. Затем, детритофагами питаются хищники. Таким образом, подобные пищевые цепи меньше зависят от прямой солнечной энергии, чем пастбищные. Главное для них – приток органических веществ, производимых в другой системе.

К примеру, такой тип пищевой цепи встречается в разлагающейся подстилке умеренного леса.

Энергия в пищевой цепи

Энергия переносится между трофическими уровнями, когда один организм питается другим и получает от него питательные вещества. Однако это движение энергии неэффективное, и эта неэффективность ограничивает протяженность пищевых цепей.

Когда энергия входит в трофический уровень, часть ее сохраняется как биомасса, как часть тела организмов. Эта энергия доступна для следующего трофического уровня. Как правило, только около 10% энергии, которая хранится в виде биомассы на одном трофическом уровне, сохраняется в виде биомассы на следующем уровне.

Этот принцип частичного переноса энергии ограничивает длину пищевых цепей, которые, как правило, имеют 3-6 уровней.

На каждом уровне, энергия теряется в виде тепла, а также в форме отходов и отмершей материи, которые используют редуценты.

Почему так много энергии выходит из пищевой сети между одним трофическим уровнем и другим? Вот несколько основных причин неэффективной передачи энергии:

  • На каждом трофическом уровне значительная часть энергии рассеивается в виде тепла, поскольку организмы выполняют клеточное дыхание и передвигаются в повседневной жизни.
  • Некоторые органические молекулы, которыми питаются организмы, не могут перевариваться и выходят в виде фекалий.
  • Не все отдельные организмы в трофическом уровне будут съедены организмами со следующего уровня. Вместо этого, они умирают, не будучи съеденными.
  • Кал и несъеденные мертвые организмы становятся пищей для редуцентов, которые их метаболизируют и преобразовывают в свою энергию.

Итак, ни одна из энергий на самом деле не исчезает – все это в конечном итоге приводит к выделению тепла.

Значение пищевой цепи

1. Исследования пищевой цепи помогают понять кормовые отношения и взаимодействие между организмами в любой экосистеме.

2. Благодаря им, есть возможность оценить механизм потока энергии и циркуляцию веществ в экосистеме, а также понять движение токсичных веществ в экосистеме.

3. Изучение пищевой цепи позволяет понять проблемы биоусиления.

В любой пищевой цепи, энергия теряется каждый раз, когда один организм потребляется другим. В связи с этим, должно быть намного больше растений, чем растительноядных животных.

Автотрофов существует больше, чем гетеротрофов, и поэтому большинство из них являются растительноядными, нежели хищниками. Хотя между животными существует острая конкуренция, все они взаимосвязаны.

Когда один вид вымирает, это может воздействовать на множество других видов и иметь непредсказуемые последствия.

Источник: https://NatWorld.info/raznoe-o-prirode/troficheskie-urovni-tipy-znachenie-shemy-i-opredelenie-pishhevoj-cepi

Энергия в экосистеме. Пищевые цепи

Энергия в экосистеме. Пищевые цепи и пищевые сети

Основу «работы» экосистемы составляют два связанных процесса: круговорот веществ, который осуществляется благодаря деятельности продуцентов, консументов и редуцентов, и протекание через нее потока энергии, поступающей извне.

Энергия используется однократно и расходуется на «раскручивание» круговоротов веществ. Круговороты веществ в конкретной экосистеме и биосфере имеют сходную природу, и потому мы рассмотрим их в главе 13.

В этом разделе мы познакомимся с закономерностями протекания энергии через экосистему.

Физики определяют энергию как способность производить работу или теплообмен между двумя объектами, обладающими разной температурой. Энергия является основой «работы» любой экосистемы, в которой происходят синтез и многократные преобразования веществ.

Основным источником энергии является Солнце.

Даже гетеротрофные экосистемы используют солнечную энергию, хотя и через посредника, в роли которого выступает автотрофная экосистема, поставляющая для нее органические вещества. Ю.

Одум (1986) даже определил экологию как науку, которая «…изучает связь между светом и экологическими системами и способы превращения энергии внутри экосистемы» (с. 106).

Поток солнечной энергии постоянно протекает через фотоавтотрофные организмы, причем при передаче энергии от одного организма к другому в пищевых цепях происходит ее рассеивание в виде тепла.

Из поступающей на Землю энергии Солнца экосистемой усваивается не более 2% (в экспериментальных культурах морских планктонных водорослей удалось достичь уровня фиксации солнечной энергии 3,5%).

Большая часть энергии используется на транспирацию, отражается листьями, идет на нагревание атмосферы, воды и почвы (см. 2.2.2).

Последовательность организмов, в которой каждый предыдущий организм служит пищей последующему, называется пищевой цепью. Каждое звено такой цепи представляет трофический уровень (растения, фитофаги, хищники I порядка, хищники II порядка и т.д.).

Различают два типа пищевых цепей: пастбищные (автотрофные), в которых в качестве первого звена выступают растения (трава – корова – человек; трава – заяц – лисица; фитопланктон – зоопланктон – окунь – щука и др. ), и детритные (гетеротрофные), в которых первое звено представлено мертвым органическим веществом, которым питается детритофаг (опавший лист – дождевой червь – скворец – сокол).

Количество звеньев в пищевых цепях может быть от одного–двух до пяти–шести. Пищевые цепи в водных экосистемах, как правило, более длинные, чем в наземных.

Поскольку большинство организмов имеет широкую диету (т.е. может использовать в пищу организмы разных видов), то в реальных экосистемах функционируют не пищевые цепи, а пищевые сети. По этой причине пищевая цепь – это упрощенное выражение трофических отношений в экосистеме.

Эффективность передачи энергии по пищевой цепи зависит от двух показателей:

1. от полноты выедания (доли организмов предшествующего трофического уровня, которые были съедены живыми);

2. от эффективности усвоения энергии (удельной доли энергии, которая перешла на следующий трофический уровень в пересчете на каждую единицу съеденной биомассы).

Полнота выедания и эффективность усвоения энергии возрастают с повышением трофического уровня и меняются в зависимости от типа экосистемы.

Так в лесной экосистеме фитофаги потребляют менее 10% продукции растений (остальное достается детритофагам), а в степи – до 30%.

В водных экосистемах выедание фитопланктона растительноядным зоопланктоном еще выше – до 40%.

Этим объясняются основные краски Земли на космических снимках: леса зеленые именно потому, что фитофаги съедают мало фитомассы, а океан голубой, оттого что фитофаги выедают достаточно много фитопланктона (Polis, 1999).

С повышением трофического уровня полнота выедания еще более возрастает, хищники высших порядков выедают до 90% своих жертв, и потому доля животных, которым удается дожить до естественной смерти, очень невелика.

В водных экосистемах, к примеру, в детрит переходит 100% биомассы хищных рыб (их есть некому и плотность популяции контролируют только паразиты), но лишь 1/4 часть биомассы планктоноядных рыб, которые умерли «своей смертью». Этот детрит опускается на дно.

Лишь часть его поедается детритофагами бенотоса, а остальная – попадает в донные осадки. Доля детрита, поступающего в осадки, тем больше, чем выше продуктивность водной экосистемы.

При оценке коэффициента усвоения энергии в пищевых цепях часто используют «число Линдемана»: с одного трофического уровня на другой в среднем передается 10% энергии, а 90% – рассеивается. Однако это «число» чрезмерно упрощает и даже искажает реальную картину.

«Закон 10%» действует только при переходе энергии с первого трофического уровня на второй, и то не во всех случаях. Эффективность усвоения энергии в следующих звеньях пищевой цепи – от фитофагов к зоофагам или к хищникам высших порядков – может достигать 60%.

Высокой эффективностью усвоения энергии в «плотоядных» звеньях пищевых цепей объясняется сравнительно небольшое количество экскрементов хищников и ограниченность состава сапротрофов (редуцентов, копрофагов), питающихся ими.

Основная фауна копрофагов связана с экскрементами растительноядных животных.

Кстати, о том, что при хищничестве эффективность усвоения энергии выше, чем при фитофагии, знает каждый из личного опыта: вегетарианский обед из овощей или картофеля велик по объему, но малокалориен, а сравнительно небольшой по весу бифштекс утолит голод и надолго обеспечит ощущение сытости.

Таким образом, в пищевой цепи на каждом следующем трофическом уровне относительное количество передаваемой энергии возрастает, так как одновременно увеличивается и потребление живой биомассы, и ее усвоение (уменьшается доля биомассы, которая возвращается в экосистему с экскрементами).

Поведение энергии подчиняется действию первого и второго законов термодинамики.

Первый закон (сохранения энергии) – о сохранении ее количества при переходе из одной формы в другую. Энергия не может появиться в экосистеме сама собой, она поступает в нее извне с солнечным светом или вследствие химических реакций и усваивается продуцентами.

Далее она будет частично использована консументами и симбиотрофами, «обслуживающими» растения, частично – редуцентами, которые разлагают мертвые части растений, и частично – затрачена на дыхание.

Если суммировать все эти фракции расхода энергии, усвоенной растениями в фотоавтотрофной экосистеме, то сумма будет равна той потенциальной энергии, которая накоплена при фотосинтезе.

Второй закон – о неизбежности рассеивания энергии (т.е. снижения ее «качества») при переходе из одной формы в другую. В соответствии с этим законом энергия теряется при ее передаче по пищевым цепям. В наиболее общем виде эти потери отражает «число Линдемана».

Контрольные вопросы

1. Что такое энергия?

2. Какое количество солнечной энергии может усвоить экосистема?

3. Что такое пищевая цепь?

4. Что такое трофический уровень?

5. Приведите примеры пастбищных и детритных пищевых цепей.

6. Из какого числа звеньев состоят пищевые цепи в наземных и водных экосистемах?

7. Чем отличаются понятия «пищевая цепь» и «пищевая сеть»?

8. В каких пределах меняется полнота выедания организмов на разных трофических уровнях и в разных экосистемах?

9. Как меняется эффективность усвоения энергии организмами с повышением их трофического уровня?

10. Проиллюстрируйте действие законов термодинамики при «работе» экосистемы.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/17_19659_energiya-v-ekosisteme-pishchevie-tsepi.html

Book for ucheba
Добавить комментарий