Классификация  биотических  взаимодействий

Межвидовые взаимодействия биотические факторы Классификация взаимодействий n

Классификация  биотических  взаимодействий

Межвидовые взаимодействия биотические факторы

Классификация взаимодействий n Прямые (влияние насекомоядных птиц на популяции насекомых) n Косвенные (влияние насекомоядных птиц на урожай плодов)

Классификация по В. Н. Беклемишеву n n 1) Трофические а) питание одного вида другим б) трофическая конкуренция в) косвенные трофические взаимодействия 2) Топические 3) Форические а) зоохория б) форезия 4) Фабрические

Классификация Хэскела и Букхолдера Тип взаимодействия Виды Примечания 1 2 1. Нейтрализм 0 0 2. Прямая конкуренция – – Прямое взаимное подавление обоих видов 3. Конкуренция из-за ресурсов – – Непрямое подавление при дефиците ресурса 4. Аменсализм – 0 5.

Паразитизм + – Паразиты всегда намного меньше хозяев 6. Хищничество (выедание) + – Хищники обычно крупнее, чем жертвы 7. Комменсализм + 0 Нахлебничество и синойкия 8. Протокооперация + + Взаимовыгодное факультативное объединение 9.

Мутуализм + + Взаимовыгодное факультативное объединение

Основные принципы межвидовых взаимодействий n n n 1. Негативные взаимодействия проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях, где высокая смертность нейтрализуется r-отбором. 2.

В процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов, 3.

В недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях.

Нейтрализм n форма отношений, когда от совместного существования на одной территории вида не получают ни вреда ни пользы. Однако состояние сообщества в целом может влиять на них сходным образом

Аменсализм – n форма отношений, когда один вид подавляет другой, не получая при этом выгоды. Чаще всего в качестве примера приводят ель и светолюбивые травы, погибающие под ее пологом. Под определение «аменсализм» попадают действия человека как биологического вида, который уничтожает огромное количество видов, нередко без всякой для себя пользы

Отсутствие светолюбивых трав под пологом хвойного леса

Комменсализм – форма симбиоза, при которой популяция одного вида получает выгоду, не нанося вреда популяции другого вида. Основой для комменсализма может быть n общее пространство, n субстрат, n кров, n передвижение n пища

Примеры комменсализма. Слева направо: рыбаклоун и актиния, цапли и буйвол

Протокооперация объединяет случаи «взаимопомощи» видов. Эти отношения приносят обоюдную пользу и строятся на факультативной основе, т. е популяции видов – партнеров могут существовать независимо

Мутуализм – устойчивое взаимовыгодное сожительство двух организмов

Хищник-жертва n Хищничество – это поедание одного организма (жертвы) другим организмом (хищником), причем жертва должна быть живой перед первым нападением.

Классификация хищников Подход «таксономический» , основан на разделении всех хищников по типу поедаемых объектов. Выделяют следующие типы хищников: n плотоядные хищники (или миофаги); n растительноядные хищники (или фитофаги); n со смешанным питанием или всеядные хищники (полифаги)

Классификация хищников «Функциональный» подход – основан на способах добывания и поедания объектов, с учетом последствий для жертвы. Согласно ему, можно выделить 4 типа стадии перехода от хищничества к паразитизму: n истинные хищники; n хищники с пастбищным типом питания; n паразитоиды; n паразиты

Особенности взаимоотношения по типу «хищник-жертва» Эта проблема имеет ряд ключевых вопросов: n Что такое хищник для жертвы, и жертва для хищника с точки зрения экологии? n Какие основные эколого-эволюционные направления имеются у хищника и жертвы? n Какие характерные особенности возникают у хищника и у жертвы? n Какова динамика популяций хищника и жертвы? n Есть ли устойчивое равновесное состояние в системе взаимодействий популяций хищника и жертвы?

Какова динамика популяций хищника и жертвы? П Л О т н О С Т Ь хищник Предел роста численности жертвы жертва 1 2 4 3 время

Паразитизм Паразитов подразделяют на: n Эктопаразитов – живущих на поверхности хозяев; n Эндопаразитов – живущих внутри организма хозяина; n Облигатных паразитов, или обязательных, которые не могут не паразитировать (например, трематоды и цестоды); n Факультативных, которые ведут свободный образ жизни и переходят к паразитизму исключительно в редких случаях, и не имеют ярко выраженных морфофизиологических и биологических приспособлений (некоторые нематоды); n Паразитоидов – паразитирует отдельная стадия

Хозяев подразделяют на n Дефинитивных, или окончательных – в них обитает половозрелая стадия паразита; n Промежуточных, в которых происходит развитие каких-либо стадий паразита; n Резервуарных, в которых происходит накопление инвазионных стадий без развития паразита.

Различия между хищниками и паразитами Показатель Хищник Паразит Жертва питания объект и среда обитания Размеры жертвы меньше больше Размеры хищника Численность жертвы Численность больше меньше выше ниже выше

Различия между хищниками и паразитами Зависимость от внешней среды прямая Опосредованная (через организм хозяина) Один-несколько Число жертв много Плодовитость Организация хищника низкая усложнение Жизненный цикл Специализация на жертве Простой высокая Упрощение, редукция многих органов Сложный Встречается редко Распространенное явление

Какие реакции могут возникать у хозяев? n n Иммунные ответы. Они характерны для животных и основаны на том, что организм вырабатывает группы антител в присутствие чужеродного белка или имеются специализированные фагоцитарные клетки, которые уничтожают паразитарные организмы.

Этот ответ, как правило, наиболее эффективен в отношении паразитарных микроорганизмов.

Выработка специфических веществ у растений, вызывающих гибель паразитарных микроорганизмов – это, так называемые, фитоалексины (низкомолекулярные соединения, обладающие антимикробным действием метаболиты, которые вырабатывает гибнущая клетка при поражении ее паразитом). Механизмы самоочищения.

Включают образование капсул вокруг внедренного в ткани организма, преждевременное сбрасывание пораженной листвы, переход на другие объекты питания, несвойственные виду Усиление защитных свойств покровов. Образование непроницаемых тканей на поверхности тела или выделение ядовитой или бактерицидной слизи.

Конкуренция n взаимоотношения между видами, использующими один биологический ресурс. Является симметричным процессом, так как обе популяции испытывают неблагоприятное влияние, причем каждый вид стремится избежать такого взаимодействия. Процесс давления популяций видов конкурентов получил название экологической компрессии

Межвидовая конкуренция может быть: n Экспуатационной (косвенного влияния), пассивное взаимодействие, приводящее к уменьшению доступности ресурса n Интерференционной (прямого влияния), непосредственное подавление одного вида другим

Экологическое высвобождение n Установить наличие конкуренции между двумя видами можно, искусственно устранив одного из предполагаемых конкурентов. Если численность этого другого вида после удаления первого вида повысится, то можно сделать вывод, что прежде он подавлялся под действием межвидовой конкуренции

Конкурентное исключение Формы конкурентных взаимоотношений могут быть разными, но если два вида с одинаковыми экологическими требованиями оказываются в одном сообществе, то один из них вытесняет другой

Принцип конкурентного исключения n n n содержит два общих положения, относящихся к симпатрическим видам 1) если два вида занимают одну и ту же экологическую нишу, то почти наверняка один из них превосходит другой в этой нише и, в конце концов, вытеснит менее приспособленный вид. Или, в более краткой форме, «сосуществование между полными конкурентами невозможно» . 2) если два вида сосуществуют в состоянии устойчивого равновесия, то они должны быть экологически дифференцированы, с тем чтобы они могли занимать различные ниши.

Замещение видов Межвидовая конкуренция может приводить к различным конечным результатам. Один из них — замещение видов. Процесс межвидового отбора может продолжаться вплоть до замещения одного вида другим.

Вид А может полностью заменить на некоторой территории вид В, если условия среды, при которых вид А обладает преимуществом, будут оставаться постоянными.

Победителем в конкурентной борьбе оказывается тот вид, который в данной экологической обстановке имеет хотя бы малейшее преимущество

Опыты Т. Парка с мучными хрущаками

Сосуществование видов n Полное замещение одного вида другим — не единственный результат межвидовой конкуренции, о чем свидетельствует часто наблюдаемое в природе сосуществование близких видов со сходными экологическими потребностями

Существует ряд ситуаций, в которых полного замещения не происходит n n Замещение одного вида другим — длительный процесс.

Поэтому следует ожидать, что, производя наблюдения в любой данный момент времени, мы обнаружим несколько пар конкурирующих видов, находящихся на стадии незавершенного замещения.

Экологически сходные виды могут сосуществовать, никогда не достигая стадии прямой межвидовой конкуренции. Так будет обстоять дело в том случае, если численность этих видов сдерживается каким-то другим фактором, а не прямой конкуренцией

Дифференциация (разделение) экологических ниш n n В ряде случаев отбор приводит не к вытеснению видов, а к дифференциации (разделению) их экологических ниш. Если мы представим экологическую нишу, как многомерное пространство, где каждая ось отражает экологические требования вида, то дифференциацию можно разделить по трем основным осям: Питание Пространство Время

Диаграмма разделения экологических ниш водных беспозвоночных ПО ТРЕМ ОСЯМ “экологического пространства”:

Источник: https://present5.com/mezhvidovye-vzaimodejstviya-bioticheskie-faktory-klassifikaciya-vzaimodejstvij-n/

Классификация биотических взаимодействий

Классификация  биотических  взаимодействий

Биотические факторы – это совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую природу.

Классификация взаимодействий

1. Нейтрализм – ни одна популяция не влияет на другую.

2. Конкуренция – это использование ресурсов (пищи, воды, света, пространства) одним организмом, который тем самым уменьшает доступность этого ресурса для другого организма.

Конкуренция бывает внутривидовая и межвидовая. Если численность популяции невелика, то внутривидовая конкуренция выражена слабо и ресурсы имеются в изобилии. При высокой плотности популяции интенсивная внутривидовая конкуренция снижает наличие ресурсов до уровня, сдерживающего дальнейший рост, тем самым регулируется численность популяции.

Межвидовая конкуренция – взаимодействие между популяциями, которое неблагоприятно сказывается на их росте и выживаемости. При завозе в Британию из Северной Америки каролинской белки уменьшилась численность обыкновенной белки, т.к. каролинская белка оказалась более конкурентоспособной.

Конкуренция бывает прямая и косвенная.

Прямая – это внутривидовая конкуренция, связанная с борьбой за место обитания, в частности защита индивидуальных участков у птиц или животных, выражающейся в прямых столкновениях. При недостатке ресурсов возможно поедание животных особей своего вида (волки, рыси, хищные клопы, пауки, крысы, щука, окунь и т.д.)

Косвенная – между кустарниками и травянистыми растениями в Калифорнии. Тот вид, который обосновался первым, исключает другой тип. Быстро растущие травы с глубокими корнями снижали содержание влаги в почве до уровня непригодного для кустарников. А высокой кустарник затенял травы, не давая им произрастать из-за нехватки света.

3. Паразитизм – один организм (паразит) живёт за счёт питания тканями или соками другого организма (хозяина), тесно связан в своём жизненном цикле. Паразитов различают по месту обитания:

• находятся на поверхности хозяина. Блохи, вши, клещи – животные. Тля, мучнистая роса – растения. У паразита имеются специальные приспособления (крючки, присоски и т.п.)
• внутри хозяина. Вирусы, бактерии, примитивные грибы – растения. Глисты – животные. Высокая плодовитость. Не приводят к гибели хозяина, но угнетают процессы жизнедеятельности.

4. Хищничество – поедание одного организма (жертвы) другим организмом (хищником).

Хищники могут поедать травоядных животных, и также слабых хищников. Хищники обладают широким спектром питания, легко переключаются с одной добычи на другую более доступную.

Хищники часто нападают на слабые жертвы. Норка уничтожает больных и старых ондатр, а на взрослых особей не нападает.

Поддерживается экологическое равновесие между популяциями жертва-хищник.

5. Симбиоз – сожительство двух организмов разных видов при котором организмы приносят друг другу пользу. По степени партнерства симбиоз бывает:

– Комменсализм – один организм питается за счет другого, не нанося ему вреда. Рак – актиния. Актиния прикрепляется к раковине, защищая его от врагов, и питается остатками пищи.
– Мутуализм – оба организма получают пользу, при этом они не могут существовать друг без друга. Лишайник – гриб + водоросль. Гриб защищает водоросль, а водоросль кормит его.

В естественных условиях один вид не приведёт к уничтожению другого вида.

Экологическая система (биогеоценоз) – это сообщество организмов с окружающей их абиотической средой (почвой, атмосферой и т. п.).

Коралловый риф – один из примеров экосистемы.

Существуют пять основных подходов в экологии.

– популяционная экология (изучение динамики численности популяций и её связи с внешними факторами);

– синэкология (изучение природных сообществ);

– изучение местообитаний;

– изучение экосистем (в частности, круговорота веществ и энергии в природе);

– эволюционная экология (реконструкция древних природных сообществ и прогнозирование изменений в сообществах), а также историческая экология (изучение изменений, связанных с деятельностью человека).

В экологическую систему входят абиотические (то есть неживые) и биотические компоненты. Иногда абиотические компоненты биогеоценоза называют биотопом, а биотические – биоценозом. Почву, относящуюся к абиотическим компонентам, нередко рассматривают как отдельную структурную единицу экосистемы.

Биотопы объединяются в биохоры, а последние – в биоциклы. Так, биотопы каменистых, глинистых и песчаных пустынь объединяются в биохор пустынь; биохоры пустынь, лесов и степей объединяются в биоцикл суши. Три биоцикла: суша, море и внутренние водоёмы – образуют биосферу.

Одним из важнейших экологических понятий является поток энергии. Энергия приходит в экологические системы в конечном счёте от Солнца; при этом автотрофы используют непосредственно солнечный свет, а гетеротрофы получают от автотрофов уже преобразованную энергию в виде питательных веществ.

За год одним квадратным метром земной поверхности (и растениями на нём) поглощается около 5 · 10 9 Дж тепла. Большая часть энергии сразу отражается обратно в атмосферу, часть усваивается организмами и переходит в другие формы. При этом какая-то доля энергии также переизлучается в атмосферу в виде тепла.

Биологическая продуктивность экосистем

Продуктивность экосистемы — это накопление экосистемой органического вещества в процессе ее жизнедеятельности. Продуктивность экосистемы измеряется количеством органического вещества, создаваемого за единицу времени на единицу площади.

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией, а прирост за единицу времени массы консументов — вторичной продукцией.

Первичная продукция подразделяется на два уровня — валовую и чистую продукцию. Валовая первичная продукция — это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли — около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией, она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т.е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т.е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня, так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы — продуценты, консументы и редуценты — составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов.

Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах — в калориях, джоулях и т.

п , что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

По величине биологической продуктивности экосистемы подразделяют на 4 класса:

1. экосистемы очень высокой продуктивности – >2 кг/м2 0 в год (тропические леса, коралловые рифы);

2. экосистемы высокой продуктивности – 1-2 кг/м2 в год (липово-дубовые леса, прибрежные заросли рогоза или тростника на озерах, посевы кукурузы и многолетних трав при орошении и внесении высоких доз удобрений);

3. экосистемы умеренной продуктивности – 0,25-1 кг/м2 в год (сосновые и березовые леса, сенокосные луга и степи, заросшие водными растениями озера);

4. экосистемы низкой продуктивности – < 0,25 кг/м2 в год (пустыни, тундра, горные степи, большая часть морских экосистем). Средняя биологическая продуктивность экосистем на планете равна 0,3 кг/м2 в год.

Поток энергии в экосистеме. В функционирующей природной экосистеме не существует отходов. Все организмы, живые или мертвые, потенциально являются пищей для других организмов: гусеница ест листву, дрозд питается гусеницами, ястреб способен съесть дрозда. Когда растения, гусеница, дрозд и ястреб погибают, они в свою очередь перерабатываются редуцентами.

Пищевая цепь – последовательность организмов, в которой каждый из них съедает или разлагает другой. Пищевые цепи – это также движение питательных веществ от продуцентов, консументов (травоядных, плотоядных и всеядных) к редуцентам и обратно к продуцентам.

Рис. 2

Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню (от греческого слова trophos – «питающиеся»).

Организмы природных экосистем вовлечены в сложную сеть многих связанных между собой пищевых цепей. Такая сеть называется пищевой сетью.

Рис. 3

Движение энергии в экосистемах происходит посредством двух связанных типов пищевых сетей:

пастбищной и детритной.

Рис. 4

В пастбищной пищевой сети живые растения поедаются фитофагами, а сами фитофаги являются пищей для хищников и паразитов.

В детритной пищевой сети отходы жизнедеятельности и мертвые организмы разлагаются детритофагами и деструкторами до простых неорганических соединений, которые вновь используются растениями.

Пирамиды энергетических потоков.

С каждым переходом из одного трофического уровня в другой в пределах пищевой цепи или сети совершается работа и в окружающую среду выделяется тепловая энергия, а количество энергии высокого качества, используемой организмами следующего трофического уровня, снижается.

Правило 10%: при переходе с одного трофического уровня на другой 90% энергии теряется, и

10% передается на следующий уровень.

Чем длиннее пищевая цепь, тем больше теряется полезной энергии. Поэтому длина пищевой цепи обычно не превышает 4 – 5 звеньев.

Пирамиды численностей и биомасс.

Мы можем собрать все образцы организмов в экосистеме и подсчитать численность всех видов, обнаруженных на каждом трофическом уровне. Такая информация необходима для создания пирамиды численностей для экосистем.

Рис. 5 Обобщенные пирамиды численностей в экосистемах.

Сухой вес всех органических веществ, содержащихся в организмах экосистемы, называется биомассой. Каждый трофический уровень пищевой цепи или сети содержит определенное количество биомассы.

Ее можно вычислить, если собрать все живые организмы с различных произвольно выбранных участков. Собранные экземпляры необходимо рассортировать по трофическим уровням, высушить и взвесить.

Полученные данные в дальнейшем используются для построения пирамиды биомасс для определенной экосистемы.

Рис. 6 Обобщенные пирамиды биомасс в экосистемах. Размер каждого слоя пропорционален сухой массе на квадратный метр всех организмов на данном трофическом уровне.

Чистая первичная продуктивность растений.

Скорость, с которой растения экосистемы производят полезную химическую энергию или биомассу, называется чистой первичной продуктивностью.

Чистая первичная продуктивность = скорость, с которой растения – скорость, с которой растения

производят химическую энер- расходуют химическую энер-

гию в процессе фотосинтеза гию в процессе дыхания

КРУГОВОРОТ ВЕЩЕСТВ В ЭКОСИСТЕМАХ.

I. Круговорот углерода

Рис. 7 Упрощенная диаграмма части углеродного цикла, показывающая круговорот вещества (закрашенные стрелки) и однонаправленный поток энергии (незакрашенные стрелки) в процессах фотосинтеза и аэробного дыхания.

Углерод является основным «строительным материалом» молекул углеводов, жиров, белков, нуклеиновых кислот (таких как ДНК и РНК) и других важных для жизни органических соединений.

Вмешательство человека в круговорот углерода резко возрастает, особенно начиная с 1950-х годов, из-за быстрого роста населения и использования ресурсов, и происходит оно в основном двумя способами:

– Сведение лесов и другой растительности без достаточных лесовосстановительных работ, в связи

с чем уменьшается общее количество растительности, способной поглощать СО2.

– Сжигание углеродосодержащих ископаемых видов топлива и древесины. Образующийся при

этом углекислый газ попадает в атмосферу.

II. Круговорот азота.

Рис. 8 Упрощенная диаграмма круговорота азота.

1. бактерии

2. осадки

3. азотофиксирующие бактерии и сине-зеленые водоросли

Вмешательство человека в круговорот азота состоит в следующем:

– Сжигание древесины или ископаемого топлива (NO). Оксид азота затем соединяется в атмосфере

с кислородом и образует диоксид азота (NO2), который при взаимодействии с водяным паром

может образовывать азотную кислоту (HNO3).

– Производство азотных удобрений и их широкое применение.

– Увеличение количества нитрат-ионов и ионов аммония в водных экосистемах при попадании в

них загрязненных стоков с животноводческих ферм, смытых с полей азотных удобрений, а также

очищенных и неочищенных коммунально-бытовых канализационных стоков.

III. Круговорот фосфора.

Рис. 9 Упрощенная диаграмма круговорота фосфора.

1. разработка недр

2. разработка недр

3. сток и эрозия

4. выщелачивание

5. выщелачивание и эрозия

6. речной сток

7. разложение

8. отходы и разложение

9. птицы, питающиеся рыбой.

Вмешательство человека в круговорот фосфора сводится в основном к двум вариантам:

– Добыча больших количеств фосфатных руд для производств минеральных удобрений и

моющих средств.

– Увеличение избытка фосфат-ионов в водных экосистемах при попадании в них загрязненных

стоков с животноводческих ферм, смытых с полей фосфатных удобрений, а также

очищенных и неочищенных коммунально-бытовых стоков.

V. Круговорот воды.

Круговорот воды или гидрологический цикл, в процессе которого происходит накопление, очистка и перераспределение планетарного запаса воды.

Человек вмешивается в круговорот воды двумя способами:

1. Забор больших количеств пресной воды из рек, озер и водоносных горизонтов. В густозаселенных или интенсивно орошаемых районах водозабор привел к истощению запасов грунтовых вод или к вторжению соленой океанической воды в подземные водоносные горизонты.

2. Сведение растительного покрова суши в интересах развития сельского хозяйства, при добыче полезных ископаемых, строительстве дорог, автостоянок, жилья и других видах деятельности.

Это приводит к уменьшению просачивания поверхностных вод под землю, что сокращает пополнение запасов грунтовых вод, увеличивает риск наводнений и повышает интенсивность поверхностного стока, тем самым, усиливая эрозию почв.

Понятие о динамике экосистем.Экосистемы подвержены непрерывным изменениям. Одни виды постепенно отмирают или вытесняются, уступая место другим. Внутри экосистем постоянно протекают процессы разрушения и новообразования. Например, старые деревья отмирают, падают и перегнивают, а покоящиеся рядом до поры до времени в почве семена прорастают, давая новый цикл развития жизни.

Постепенные процессы изменения экосистем могут носить иной характер в случае катастрофических воздействий на них. Если разрушение биоценоза вызвано, например, ураганом, пожаром или рубкой леса, то восстановление исходного биоценоза происходит медленно.

Источник: https://sdamzavas.net/3-25561.html

Классификация биотических взаимодействий популяций двух видов ( по Ю. Одуму, 1986 )

Классификация  биотических  взаимодействий

Тип взаимодействия Виды Общий характер взаимодействия
1. Нейтрализм Ни одна популяция не влияет на другую
2. Конкуренция, непосредственное взаимодействие Прямое взаимное подавление обоих видов
3. Конкуренция, взаимодействие из-за ресурсов Непрямое подавление при дефиците внешнего ресурса
4. Аменсализм Популяция 2 подавляет популяцию 1 , но сама не испытывает отрицательного воздействия
5. Паразитизм + Популяция-паразит 1 состоит из меньших по величине особей, чем популяция 2
6. Хищничество + Особи хищника 1 обычно крупнее, чем особи жертвы 2
7. Комменсализм + Популяция 1, комменсал, получает пользу от объединения; популяции 2 это объединение безразлично
8. Протокооперация + + Взаимодействие благоприятно для обоих видов, но не обязательно
9. Мутуализм + + Взаимодействие благоприятно для обоих видов и обязательно

В табл. 4.1 «0» означает, что популяция не испытывает никакого влияния при взаимодействии видов; « + » – что она получает пользу от взаимодействия видов; «-» – что она испытывает отрицательное влияние такого взаимодействия.

Не существует двух различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется, по существу, одна и та же ниша.

В этом случае, когда ниши частично перекрываются, возникает особо жесткая конкуренция, но в конечном итоге нишу занимает один вид.

Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения, или принципа Гаузе, в честь ученого, доказавшего его существование экспериментально в 1934 г. (рис. 4.4).

Г. Ф. Гаузе экспериментально исследовал конкуренцию двух видов инфузорий: Paramecium candatum и Parameciura aurelia. Их культивировали раздельно и вместе, используя строго дозированную бактериальную пищу. При раздельном культивировании их численность росла по обычной S-образной кривой, при совместном – побеждали в конкурентной борьбе P. aurelia (рис. 4.4).

Поражение P. candatum объясняется тем, что она плохо переносила накопление в среде продуктов метаболизма бактерий и размножалась медленнее. Но при смене пищи, например при замене ее на дрожжи, побеждала уже P.

candatum, так как в благоприятных для обоих видов условиях она имела преимущество за счет способности к более быстрому размножению и увеличению своей численности.

Межвидовая конкуренция за ресурсы может касаться пространства, пищи, биогенных веществ и т. п. Именно уменьшение ресурсов приводит к ситуациям, когда мы имеем дело лишь с отрицательными взаимодействиями.

Результатом межвидовой конкуренции может быть либо взаимное приспособление двух видов, либо популяция одного вида замещается популяцией другого вида, а первый вынужден переселиться на другое место или перейти на другую пищу.

Если виды живут в разных местах, то говорят, что они занимают разные экологические ниши, если же они живут в одном месте, но потребляют разную пищу, то говорят об их несколько различающихся экологических нишах.

Процесс разделения популяциями видов пространства и ресурсов называется дифференциацией экологических ниш (рис. 4.5). На рис. 4.2 также видна дифференциация ниш по ярусам леса.

Главный результат дифференциации ниш – снижение конкуренции. Например, тенелюбивые растения не конкурируют со светолюбивыми, менее остра конкуренция за ресурсы, численность доминирующего вида, например, регулируется хищником, и т. п.

Иными словами, есть множество обстоятельств, при которых разные виды-антагонисты могут сосуществовать.

И тем не менее это отрицательные взаимодействия, поскольку взаимовлияние видов остается и не позволяет полностью раскрыть свои возможности каждому из них.

Нейтрализм – это такая форма биотических взаимоотношений, когда сожительство двух видов на одной территории не влечет за собой ни положительных, ни отрицательных последствий для них.

В этом случае виды не связаны непосредственно друг с другом и даже не контактируют между собой. Например, белки и лоси, обезьяны и слоны и т. п.

Отношения нейтрализма характерны для богатых видами сообществ.

Аменсализм – это биотические отношения, при которых происходит торможение роста одного вида (аменсала) продуктами выделения другого.

Такие отношения обычно относят к прямой конкуренции и называют антибиозом.

Наиболее хорошо они изучены у растений, которые применяют различные ядовитые вещества в борьбе с конкурентами за ресурсы, и данное явление называют аллелопатия.

Аменсализм весьма распространен в водной среде. Например, сине-зеленые водоросли, вызывая цветение воды, тем самым отравляют водную фауну, а иногда даже скот, который приходит на водопой. Аналогичные «способности» проявляют и другие водоросли. Они выделяют пептиды, хинон, антибиотики и другие вещества, которые ядовиты даже в малых дозах. Называют эти яды эктокринными веществами.

Хищничество и паразитизм: отношения хищник жертва и паразит – хозяин являются результатом прямых пищевых связей, которые для одного из партнеров имеют отрицательные последствия, а для другого – положительные. Все варианты пищевых экологических связей можно отнести к этим типам взаимодействия (в том числе и корова, поедающая траву). Любой гетеротрофный организм в сообществе существует за счет поедания другого гетеро- или автотрофа.

Хищниками называют животных, питающихся другими животными, которых они ловят и умервщляют. Для хищников характерно охотничье поведение.

Изобилие насекомых, их малые размеры и легкодоступность превращают деятельность плотоядных хищников, обычно птиц, в простое «собирательство» добычи, подобно тому как собирают семена, зерна птицы, питающиеся ими.

Насекомоядные хищники по способу овладения пищей приближаются к пастьбе травоядных животных. Некоторые птицы могут питаться и насекомыми и семенами.

Паразитизм – это такая форма пищевой связи между видами, когда организм-потребитель (консумент) использует тело живого хозяина не только как источник пищи, но и как место своего обитания (постоянного или временного).

Паразиты намного мельче своего хозяина. Паразитические отношения имеют насекомые-вредители и растения, кровососущие насекомые и животные, и т. п.

Насекомые-паразиты часто бывают разносчиками эпидемий: вши – тифа, клещи – энцефалита, и др.

В природе существуют системы, состоящие из одного вида и нескольких других видов, являющихся по отношению к нему паразитами. Это так называемые паразитарные комплексы, которые, чтобы успешно бороться с вредителями культурных растений, необходимо изучать: состав и плотность комплекса, закономерности его роста, и т. п.

Хищничество и паразитизм – это пример взаимодействия двух популяций, отрицательно сказывающееся на росте и выживании одной из них (см. табл. 4.1, п. 5, 6). Подобные популяции развиваются, т. е.

эволюционируют, синхронно, и по мере длительности их взаимодействия коэволюция может привести к снижению степени отрицательного взаимодействия или устранить его вообще, поскольку сильное подавление популяции жертвы или хозяина популяцией хищника или паразита может привести к уничтожению одной из них или обеих.

На рис. 4.6 приводится пример эволюции гомеостаза двух насекомых в системе «хозяин–паразит», которые помещались в клетку, состоящую из 30 пластиковых камер, соединенных друг с другом трубочками, замедлявшими расселение паразита. На рис. 4.

6 авидны резкие подъемы и спады плотности популяций, так как в этом случае дикие особи недавно посажены вместе. На рис. 4.

6 б– популяции взяты из колоний, в которых они просуществовали совместно в течение двух лет и здесь уже отмечается более стабильное равновесие, резкие спады отсутствуют, так как у хозяина появляется адаптивная устойчивость, о чем свидетельствует сильное снижение рождаемости у паразита.

Итак, наиболее жесткая конкуренция проявляется тогда, когда контакт между популяциями установлен недавно, например, вследствие изменений, произошедших в экосистеме под влиянием деятельности человека. Именно поэтому непродуманное вмешательство человека в структуру биоценоза нередко приводит к эпидемическим вспышкам.

Таким образом, при длительном контакте паразитов и хищников с их жертвами, влияние на них весьма умеренно, нейтрально или даже благоприятно, а наибольшее повреждающее действие оказывают новые паразиты и хищники. Отсюда вывод: «…необходимо избегать создания новых отрицательных взаимодействий, а если они возникли, стараться по возможности сдерживать их» (Ю. Одум, 1975).

К положительным видам взаимодействия Ю. Одум относит комменсализм, кооперацию и мутуализм (см. табл. 4.1). Многие экологи считают, что в стабильных экосистемах отрицательные и положительные взаимодействия должны находиться в равновесии.

Комменсализм, кооперацию и мутуализм можно рассматривать как стадии последовательного совершенствования положительных взаимодействий в ходе эволюции.

Комменсализм – это наиболее простой тип положительных взаимодействий (см. табл. 4.1). Комменсалы – организмы, которые поселяются в жилищах других организмов, не причиняя им зла и не принося добра.

Для тех животных, у которых они «квартируют», комменсалы безразличны. В океанах и морях в каждой раковине – организмы, которые получают здесь укрытие, но абсолютно безобидны для «владельца» этой раковины.

Протокооперация – это следующий шаг к более тесной интеграции, когда оба организма получают преимущества от объединения, хотя такое сосуществование не обязательно для их выживания.

Например, крабы и кишечнополостные: краб «сажает» себе на спину кишечнополостное, которое маскирует и защищает его (имеет стрекательные клетки), но, в свою очередь, оно получает от краба кусочки пищи и использует его как транспортное средство.

Мутуализм (симбиоз) – следующий этап развития зависимости двух популяций друг от друга. Объединение происходит между весьма разными организмами и наиболее важные мутуалистические системы возникают между автотрофами и гетеротрофами.

Примером может служить сотрудничество между бактериями, фиксирующими азот, и бобовыми растениями; симбиоз между копытными и бактериями, обитающими в их рубце, и др. Широко известным примером мутуализма является симбиоз водоросли и гриба –лишайники.

Функциональная и морфологическая связь этих организмов настолько тесна, что лишайники практически составляют единый организм. Ю.

Одум (1975), образно говоря, призывает к тому, чтобы «модель лишайника», прошедшая путь к гармоническому взаимодействию двух различных видов, через паразитизм водоросли, стала символичной для человека, который должен установить мутуалистические отношения с природой, поскольку он является гетеротрофом, зависящим от имеющихся ресурсов. В противном случае, «он, подобно «неразумному» и «неприспособленному» паразиту, может довести эксплуатацию своего «хозяина» до такой степени, что погубит себя».

К сказанному о межвидовой борьбе в биоценозе следует добавить, что в 90-х гг. XX в.

английские и канадские ученые пришли к выводу, что в лесах деревья и кустарники, наоборот, – помогают друг другу благодаря действию законов всеобщей поддержки.

Информация, которая обеспечивает такое взаимодействие, передается под землей благодаря грибку микориза, имеющихся на корнях всех растений.

Из приведенной характеристики биоценозов ясно, что их устойчивость (гомеостаз) зависит прежде всего от изменений в структуре сообществ, от динамики видового разнообразия, от изменений в трофической цепи и, в известной мере, от регуляции биоценоза с помощью аллелохимических факторов, и др.

Контрольные вопросы

1. Что понимается под биоразнообразием?

2. Почему видовое разнообразие является основой биологического разнообразия в живой природе?

3. Что такое экотон и каковы причины краевого эффекта?

4.Какие существуют показатели оценки биоразнообразия биологических сообществ?

5. Как отражается биоразнообразие в пространственной структуре биоценоза?

6. В чем состоят отрицательные взаимодействия между видами? Коэволюция системы «хищник–жертва» или «паразит–хозяин».

7. В чем состоят положительные взаимодействия между видами?

8. Почему, по мнению Ю. Одума, человек должен установить мутуалистические отношения сприродой?

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/b33423.html

Биотические связи в природе. Примеры, типы биотических связей

Классификация  биотических  взаимодействий

Биотические факторы природы – это взаимоотношения всех живых организмов друг с другом и с окружающей средой. Биотические связи возникают в биогеоценозе между различными видами. Самой основной и важной формой таких связей являются пищевые взаимоотношения, которые формируют циклы питания и сложные цепи.

Нейтрализм

Биотические связи, при которых жизнедеятельность одного организма не оказывает никакого влияния на жизнь другого, называется нейтрализмом. Примерами данного взаимоотношения являются заяц-беляк и ленточный червь, бабочка-крапивница и блоха, а также бесконечное множество других.

Ученые заметили, что во время своей жизнедеятельности все живые организмы выделяют в окружающую среду твердые, жидкие и газообразные вещества, которые способны влиять на другие растения, животных и микроорганизмы.

Аллелопатия

Биотические связи, осуществляющиеся благодаря специфическим действующим продуктам обмена веществ, выделяющимся во внешнюю среду, называются аллелопатией.

Такое явление известно уже давно, но лишь в 1937 году немецкий ученый Молиш дал ему определенное название.

Более детально данное явление изучено на растительных организмах. Выделения многих растений могут оказывать на близрастущих соседей как токсичное, так и стимулирующее действие. Примеры биотических связей у растений могут быть такими:

  • абсинтин листьев горькой полыни способен угнетать рост и развитие многих других растений;
  • фасоль замедляет рост яровой пшеницы;
  • выделения корней пырея плохо влияют не только на другие травы и кустарники, но и на деревья.

Животные также выделяют вещества – феромоны, способные влиять на поведение и развитие особей определенного вида. С их помощью также передается информация другим видам.

Выделение биологически активных веществ свойственно и микроорганизмам. Например, широко известны такие антибиотики, как пенициллин и стрептомицин.

Эффект группы

Групповой эффект – это оптимизация всех процессов, которая ведет к максимальному повышению жизнеспособности особей при их совместном обитании. Такая особенность проявляется у большого количества видов, которые могут нормально размножаться и развиваться только в том случае, если они объединились в небольшие или огромные группы.

Типы биотических связей зависят от ареала обитания особей и способов их существования. Например, для того чтобы выжило стадо африканских слонов, в нем должно находиться не менее тридцати особей.

Биотические связи, во время которых происходят взаимоотношения между особями одного или разных видов, при которых используются одни и те же ресурсы при их значительном недостатке, называются конкуренцией. Внутривидовая конкуренция способна значительно повысить интенсивность естественного отбора. Самым популярным примером такого процесса является самоизреживание елей.

А вот межвидовой тип конкуренции чаще всего характерен для экологически близких особей или популяций разных видов. Может быть как пассивной, так и активной. Первая подразумевает использование природных богатств, необходимых обоим видам. А во время второй происходит подавление одного вида другим.

Конкуренция является одной из основных причин того, что несколько видов, характеризующихся похожими образом жизни, поведением и спецификой питания, не могут сожительствовать в одном сообществе. Такая конкуренция может превратиться во вражду.

Хищничество

Биотические связи в природе, которые характеризуются таким способом добычи пищи, как ловля, убийство и съедение пойманных особей, называются хищничеством. Основой таких взаимоотношений являются пищевые связи и цепочки питания.

Хищник сначала убивает добычу, а только потом ее съедает. Но перед этим ее нужно поймать. Для этих целей у каждого хищника есть специальные приспособления. Исторически сложилось так, что и у жертв есть защитные элементы.

Например, панцирь, колючки, шипы, ядовитые железы и защитная окраска.

Благодаря таким обоюдным приспособлениям и сформировались группировки организмов – хищники и жертвы. В таких взаимоотношениях сформированы принципы регуляции численности обоих компонентов.

Еще недавно ученые думали, что все хищники – вредные жители планеты, поэтому их нужно истреблять. Однако это мнение оказалось ошибочным. Такие действия будут иметь негативные глобальные последствия. Существует риск нанести ущерб не только дикой природе, но и всему хозяйству.

Симбиоз

Биотические связи в природе, во время которых один из партнеров (или сразу оба) извлекает пользу от взаимоотношений друг с другом, называются симбиозом.

В мире существует большое количество примеров взаимовыгодного симбиоза. Например, желудочные и кишечные бактерии, без которых невозможен процесс пищеварения. Или опыление некоторых орхидей, чью пыльцу может переносить только определенный тип насекомых. Такие отношения проходят успешно тогда, когда они увеличивают вероятность обоих партнеров выжить.

Другими словами – это абсолютно любая форма взаимоотношений между организмами разных видов (сюда относится и паразитизм – особый вид отношений, выгодных для одного партнера, но вредных для другого).

Симбиоз, который будет выгодным для обоих представителей, называется мутуализмом. А вот комменсализм – это взаимоотношения, полезные для одного, но безразличные для другого. Эндосимбиоз – способность одного партнера жить внутри клетки другого.

Мутуализм

Самой распространенной формой совместного сожительства считается мутуализм.

Биотические связи в природе (9 класс школьной программы подробно описывает данную тему) в виде мутуализма ставят обязательное условие – существование обоих партнеров. Во время такой связи каждый из партнеров получает свою выгоду.

Например, один партнер использует другого в качестве источника питания, а второй оказывается под защитой от врагов или в благоприятных условиях для развития и размножения.

Каждый участник мутуалистической пары является эгоистом, и взаимная выгода возникает лишь от того, что полученная польза перевесит все затраты, которые требуются на поддержание взаимоотношений.

Взаимовыгодные связи формируются также благодаря поведенческим реакциям. Примеры биотических связей мутуализма – птицы совмещают собственное питание, и в это же время являются распространителями семян. Иногда возникают физические взаимоотношения.

Тесный контакт видов при мутуализме способствует их совместной эволюции. Таким примером являются приспособления, которые сформировались у цветков и их опылителей.

Комменсализм

Биотические связи (9 класс) выделяют три вида комменсализма:

  1. Используют пищу других видов.
  2. Прикрепляются к другому организму, который становится «хозяином».
  3. Поселяются во внутренних органах хозяина.

Отношения такого типа очень важны для природы, так как дают возможность на каждом кусочке Земли сожительствовать большому количеству видов, а также максимально освоить окружающую среду и использовать пищевые ресурсы.

Однако очень часто данный тип связи переходит в другие взаимоотношения. Когда поедание пищи начинает вредить хозяину, то отношения переходят на новый уровень и становятся паразитизмом или конкуренцией.

Паразитизм

Паразитизм – это вид отношений, при которых паразит использует хозяина как основное место жительства и источник питания. Биотические связи (таблица представлена в статье) описывают данный вид сосуществования особей так: паразит поселяется внутри хозяина или же на его поверхности. Паразитизм может встречаться среди различных групп организмов (у растений, животных, грибов и человека).

Физиология паразита подчиняется жизненным процессам хозяина. Поэтому для продуктивного существования необходимо использовать биологические ресурсы. Чем дольше происходит сосуществование, тем лучше данный вид паразита приспосабливается к своему хозяину и наносит ему меньше вреда.

Источник: https://FB.ru/article/223341/bioticheskie-svyazi-v-prirode-primeryi-tipyi-bioticheskih-svyazey

Классификация биотических взаимодействий популяций двух видов (по Ю. Одуму, 1986)

Классификация  биотических  взаимодействий

В табл 4.1 «0» означает, что на популяцию не оказывается никакое влияние при взаимодействии видов; «+» ¾ что она получает пользу от взаимодействия видов; «-» ¾ что она испытывает отрицательное влияние от такого взаимодействия.

Не существует двух различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется по существу одна и та же ниша.

В этом случае, когда ниши частично перекрываются, возникает особо жесткая конкуренция, но в конечном итоге нишу занимает один вид.

Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения, или принципа Гаузе, в честь русского ученого, доказавшего его существование экспериментально в 1934 г. (рис. 4.4).

Рис. 4.4. Динамика популяций инфузорий Paramecium aurelia (1) и Paramecium candatum (2), культивируемых при регулярном добавлении в среду одного и того же количества пищи:

а ¾ изолированные популяции каждого вида; б ¾ совместно культивируемые популяции (по Г. Ф. Гаузе, 1934)

Г. Ф. Гаузе экспериментально исследовал конкуренцию двух видов инфузорий: Paramecium candatum и Paramecium aurelia. Их культивировали раздельно и вместе, используя строго дозированную бактериальную пищу. При раздельном культивировании их численность росла по обычной S-образной кривой, при совместном ¾ побеждали в конкурентной борьбе P. aurelia (см. рис. 4.4).

Поражение P. candatum объясняется тем, что она плохо переносила накопление в среде продуктов метаболизма бактерий и размножалась медленнее. Но при смене пищи, например, при замене ее на дрожжи, побеждала уже P. candatum, так как в благоприятных для обоих видов условиях она имела преимущество за счет способности к более быстрому размножению и увеличению своей численности.

Межвидовая конкуренция за ресурсы может касаться пространства, пищи, биогенных веществ и т. п. Именно уменьшение ресурсов приводит к ситуациям, когда мы имеем дело лишь с отрицательными взаимодействиями.

Результатом межвидовой конкуренции может быть либо взаимное приспособление двух видов, либо популяция одного вида замещается популяцией другого вида, а первый вынужден переселиться на другое место или перейти на другую пищу.

Если виды живут в разных местах, то говорят, что они занимают разные экологические ниши, если же они живут в одном месте, но потребляют разную пищу, то говорят об их несколько различающихся экологических нишах.

Процесс разделения популяциями видов пространства и ресурсов называется дифференциацией экологических ниш (рис. 4.5). На рис. 4.2 также видна дифференциация ниш по ярусам леса.

Рис. 4.5. Распределение копытных зверей по ярусам питания в африканской саванне (по де ла Фуэнте, 1972):

1 ¾ жираф; 2 ¾ антилопа геренук; 3 ¾ антилопа дик-дик; 4 ¾ носорог; 5 ¾ слон; 6 ¾ зебра; 7 ¾ гну; 8 ¾ газель Гранта; 9 ¾ антилопа бубал

Главный результат дифференциации ниш ¾ снижение конкуренции. Например, тенелюбивые растения не конкурируют со светолюбивыми, снижается острота конкуренции за ресурсы, численность доминирующего вида, например, регулируется хищником, и т. п.

Иными словами, есть множество обстоятельств, при которых разные виды-антагонисты могут сосуществовать.

И, тем не менее, это отрицательные взаимодействия, поскольку взаимовлияние видов остается и не позволяет полностью раскрыть свои возможности каждому из них.

Нейтрализм ¾ это такая форма биотических взаимоотношений, когда сожительство двух видов на одной территории не влечет за собой ни положительных, ни отрицательных последствий для них.

В этом случае виды не связаны непосредственно друг с другом и даже не контактируют между собой. Например, белки и лоси, обезьяны и слоны и т. п.

Отношения нейтрализма характерны для богатых видами сообществ.


Аменсализм ¾ это такие биотические отношения, при которых происходит торможение роста одного вида (аменсала) продуктами выделения другого.

Эти отношения обычно относят к прямой конкуренции и называют антибиозом.

Наиболее хорошо они изучены у растений, которые применяют различные ядовитые вещества в борьбе с конкурентами за ресурсы, и данное явление называют аллелопатия.

Аменсализм весьма распространен в водной среде. Например, синезеленые водоросли, вызывая цветение воды, тем самым отравляют водную фауну, а иногда даже скот, который приходит на водопой.

Такие «способности» проявляют и другие водоросли. Они выделяют пептиды, хинон, антибиотики и другие вещества, которые ядовиты даже в малых дозах.

Называют эти яды эктокринными веществами.

Хищничество и паразитизм: отношения хищник жертва и паразит – хозяин являются результатом прямых пищевых связей, которые для одного из партнеров имеют отрицательные последствия, а для другого ¾ положительные.

Все варианты пищевых экологических связей можно отнести к этим типам взаимодействия, в том числе и корову, поедающую траву. Любой гетеротрофный организм в сообществе существует за счет поедания другого гетеротрофа или автотрофа.

Хищниками называют животных, питающихся другими животными, которых они ловят и умервщляют. Для хищников характерно охотничье поведение.

Изобилие насекомых, их малые размеры и легкодоступность превращают деятельность плотоядных хищников, обычно птиц, в простое «собирательство» добычи, подобно тому, как собирают семена, зерна птицы, питающиеся ими.

Насекомоядные хищники по способу овладения пищей приближаются к пастьбе травоядных животных. Некоторые птицы могут питаться и насекомыми, и семенами.

Паразитизм ¾ это такая форма пищевой связи между видами, когда организм-потребитель (консумент) использует тело живого хозяина не только как источник пищи, но и как место своего обитания (постоянного или временного). Паразиты намного мельче своего хозяина.

Паразитические отношения имеют насекомые-вредители и растения, кровососущие насекомые и животные и т. п. Насекомые-паразиты часто бывают разносчиками эпидемий: вши ¾ тифа, клещи ¾ энцефалита и др.

В природе существуют системы, состоящие из одного вида и нескольких других видов, являющихся по отношению к нему паразитами. Это так называемые паразитарные комплексы, например для успешной борьбы с вредителями культурных растений, необходимо изучать: состав и плотность комплекса, закономерности его роста и т. п.

Хищничество и паразитизм ¾ это пример взаимодействия двух популяций, отрицательно сказывающегося на росте и выживании одной из них (см. табл. 4.1, п. 5,6). Подобные популяции развиваются, т. е.

эволюционируют, синхронно, и по мере длительности их взаимодействия, коэволюция может привести к снижению степени отрицательного взаимодействия или устранить его вообще, поскольку сильное подавление популяции жертвы или хозяина популяцией хищника или паразита может привести к уничтожению одной из них или обеих.

Рис. 4.6. Эволюция гомеостаза в системе «хозяин – паразит»
(хозяин ¾ комнатная муха Muska domestika (I), паразит ¾ оса Nasonia vitropennis (II) (по Ю. Одуму, 1975):

а ¾ недавно объединенные популяции (впервые посажены вместе дикие особи); б ¾ популяции взяты из колоний, в которых оба вида сосуществовали

на протяжении двух лет

На рис. 4.6 приводится пример эволюции гомеостаза двух насекомых в системе «хозяин – паразит», которые помещались в клетку, состоящую из 30 пластиковых камер, соединенных друг с другом трубочками, замедлявшими расселение паразита. На рис. 4.

6, а видны резкие подъемы и спады плотности популяций, так как в этом случае дикие особи недавно посажены вместе. На рис. 4.

6, б ¾ популяции взяты из колоний, в которых они просуществовали совместно в течение двух лет и здесь уже отмечается более стабильное равновесие, резкие спады отсутствуют, так как у хозяина появляется адаптивная устойчивость, о чем свидетельствует сильное снижение рождаемости у паразита.

Итак, наиболее жесткая конкуренция проявляется тогда, когда контакт между популяциями установлен недавно, например, вследствие изменений, произошедших в экосистеме под влиянием деятельности человека. Именно поэтому, непродуманное вмешательство человека в структуру биоценоза нередко приводит к эпидемическим вспышкам.

Таким образом, при длительном контакте паразитов и хищников с их жертвами, влияние на них весьма умеренно, нейтрально или даже благоприятно, а наиболее повреждающее действие оказывают новые паразиты и хищники. Отсюда вывод: «необходимо избегать создания новых отрицательных взаимодействий, а если они возникли, стараться по возможности сдерживать их» (Ю. Одум, 1975).

К положительным видам взаимодействия Ю. Одум относит комменсализм, кооперацию и мутуализм (см. табл. 4.1). Многие экологи считают, что в стабильных экосистемах отрицательные и положительные взаимодействия должны находиться в равновесии.

Комменсализм, кооперация и мутуализм можно рассматривать как стадии последовательного совершенствования положительных взаимодействий в ходе эволюции.


Комменсализм¾ это наиболее простой тип положительных взаимодействий (см. табл. 4.1). Комменсалы ¾ организмы, которые поселяются в жилищах других организмов, не причиняя им зла и не принося вреда.

Для тех животных, у которых они «квартируют», комменсалы безразличны. В океанах и морях в каждой раковине ¾ организмы, которые получают там укрытие, но они абсолютно безобидны для «владельца» этой раковины.

Протокооперация ¾ это следующий шаг к более тесной интеграции, когда оба организма получают преимущества от объединения, хотя их сосуществование не обязательно для их выживания.

Например, крабы и кишечнополостные: краб «сажает» себе на спину кишечнополостное, которое маскирует и защищает его (имеет стрекательные клетки), но в свою очередь, оно получает от краба кусочки пищи и использует его как транспортное средство.

Мутуализм (симбиоз) ¾ следующий этап развития зависимости двух популяций друг от друга. Объединение происходит между весьма разными организмами и наиболее важные мутуалистические системы возникают между автотрофами и гетеротрофами.

Примером может служить сотрудничество между бактериями, фиксирующими азот, и бобовыми растениями, симбиоз между копытными и бактериями, обитающими в их рубце, и др. Широко известным примером мутуализма, является симбиоз водоросли и гриба ¾ лишайники.

Функциональная и морфологическая связь этих организмов настолько тесна, что лишайники практически составляют единый организм. Ю.

Одум (1975), образно говоря, призывает к тому, чтобы «модель лишайника», прошедшая путь к гармоническому взаимодействию двух различных видов, через паразитизм водоросли, стала символичной для человека, который должен установить мутуалистические отношения с природой, поскольку он является гетеротрофом, зависящим от имеющихся ресурсов. В противном случае, «он, подобно «неразумному» и «неприспособленному» паразиту, может довести эксплуатацию своего «хозяина» до такой степени, что погубит себя».

К сказанному о межвидовой борьбе в биоценозе, следует добавить, что в 90-х годах ХХ в.

английские и канадские ученые пришли к выводу, что в лесах деревья и кустарники, наоборот, помогают друг другу благодаря действию законов всеобщей поддержки.

Информация, которая обеспечивает такое взаимодействие, передается под землей благодаря грибку микориза, имеющихся на корнях всех растений.

Из приведенной характеристики биоценозов ясно, что их устойчивость (гомеостаз) зависит прежде всего от изменений в структуре сообществ, от уменьшения видового разнообразия, от изменений в трофической цепи и, в известной мере, от дезорганизации регуляции биоценоза с помощью аллелохимических факторов и др.

Контрольные вопросы

1. Что понимается под биоразнообразием природы?

2. Видовое разнообразие как основа биологического разнообразия в природе.

3. Что такое экотон и каковы причины краевого эффекта?

4. Какие существуют показатели оценки видового биоразнообразия биологических сообществ?

5. Как отражается биоразнообразие в пространственной структуре биоценоза?

6. Каково экологическое значение ярусности леса и травянистой растительности?

7. Что такое экологическая ниша? Понятие о реализованной и фундаментальной нише.

8. В чем суть принципа Гаузе?

9. В чем состоят отрицательные взаимодействия между видами? Коэволюция систем «хищник – жертва» или «паразит – хозяин».

10. В чем состоят положительные взаимодействия между видами?

11. Почему, по мнению Ю. Одума, человек должен установить мутуалистические отношения с природой?

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/5_120583_klassifikatsiya-bioticheskih-vzaimodeystviy-populyatsiy-dvuh-vidov-po-yu-odumu-.html

Book for ucheba
Добавить комментарий