Контроль загрязнения водной среды (гидросферы)

Мониторинг загрязнения гидросферы

Контроль загрязнения водной среды (гидросферы)

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

32

Кафедра «Техносферная и экологическая безопасность»

Курсовая работа по дисциплине:

«Методы и приборы контроля окружающей среды. Экологический мониторинг»

на тему: «Мониторинг загрязнения гидросферы»

Санкт-Петербург 2010

f

Министерство природных ресурсов Российской Федерации и Федеральная служба России по гидрометеорологии и мониторингу окружающей среды взаимодействуют в пределах их компетенции по основным вопросам ведения государственного мониторинга водных объектов:

· с Государственным комитетом Российской Федерации по охране окружающей среды – при ведении мониторинга источников антропогенного воздействия на окружающую среду в части оценки антропогенного воздействия на водные объекты;

· с Государственным комитетом Российской Федерации по рыболовству – при ведении государственного мониторинга объектов животного мира в части оценки состояния водных объектов как среды обитания водных животных и растений;

· с Министерством здравоохранения Российской Федерации – при ведении социально-гигиенического мониторинга в части оценки качества воды, источников питьевого и хозяйственно-бытового водоснабжения, а также оценки состояния водных объектов, содержащих природные лечебные ресурсы, и водных объектов, используемых для рекреации.

Ведение государственного мониторинга водных объектов осуществляется на локальном, территориальном, региональном (бассейновом) и федеральном уровнях.

На локальном уровне мониторинг водных объектов осуществляют водопользователи, которые ведут систематические наблюдения за водными объектами в порядке, определяемом территориальными органами Министерства природных ресурсов Российской Федерации, и представляют данные наблюдений в указанные органы в соответствии с водным законодательством Российской Федерации.

На территориальном уровне мониторинг водных объектов осуществляют территориальные органы Министерства природных ресурсов Российской Федерации и Федеральной службы России по гидрометеорологии и мониторингу окружающей среды во взаимодействии с территориальными органами федеральных органов исполнительной власти и органами исполнительной власти субъектов РФ, включает ведение территориальных банков данных и передачу данных мониторинга на региональный (бассейновый) уровень.

На региональном (бассейновом) уровне мониторинг водных объектов осуществляют бассейновые водохозяйственные управления, региональные геологические центры и другие уполномоченные на то территориальные органы Министерства природных ресурсов Российской Федерации и территориальные управления по гидрометеорологии и мониторингу окружающей среды Федеральной службы России по гидрометеорологии и мониторингу окружающей среды.

На региональном (бассейновом) уровне проводится обобщение, накопление, хранение, распространение информации, ведение региональных (бассейновых) банков данных по соответствующему региону (бассейну) и передача данных на федеральный уровень.

На федеральном уровне ведение мониторинга водных объектов обеспечивается Министерством природных ресурсов Российской Федерации и Федеральной службой России по гидрометеорологии и мониторингу окружающей среды.

На федеральном уровне осуществляется обобщение данных мониторинга регионального (бассейнового) уровня, ведение банков данных, подготовка данных мониторинга водных объектов для государственных докладов и официальных публикаций, информационный обмен на межведомственном и международном уровнях в установленном порядке.

Финансирование работ, связанных с ведением государственного мониторинга водных объектов, осуществляется за счет средств федерального бюджета, бюджетов субъектов Российской Федерации, экологических фондов и средств водопользователей.

В целом государственная наблюдательная сеть за загрязнением поверхностных вод Росгидромета предназначена для решения следующих задач:

– наблюдения за уровнем загрязнения вод и донных отложений рек, озер, водохранилищ и морей по физическим, химическим и гидробиологическим (для водных объектов) показателям с целью изучения распределения загрязняющих веществ во времени и пространстве, оценки и прогноза состояния водных ресурсов, определения эффективности мероприятий по их защите;

– обеспечения органов государственного управления, хозяйственных организаций и населения систематической и экстренной информацией об изменениях уровней загрязнения (в том числе и радиоактивного) водных объектов под влиянием хозяйственной деятельности и гидрометеорологических условий, прогнозами и предупреждениями о возможных изменениях уровней загрязненности;

– обеспечения заинтересованных организаций материалами для составления рекомендаций в области охраны и рационального использования водных ресурсов, составления планов развития экономики с учетом состояния водных ресурсов.

В настоящее время с помощью Государственной сети мониторинга поверхностных вод, базовую основу которой составляют наблюдательные органы Росгидромета, проводятся следующие основные виды наблюдений:

– за состоянием загрязнения поверхностных вод суши и морей;

– за химическим составом и кислотностью атмосферных осадков и снежного покрова;

– за фоновым загрязнением водных объектов;

– за радиоактивным загрязнением водных объектов.

Система базируется на сети пунктов режимных наблюдений, которые устанавливаются на водоемах и водотоках как в районах с повышенным антропогенным воздействием, так и на незагрязненных участках.

По состоянию на 1 января 2008 г. количественный состав службы следующий (рис.1):

– наблюдения за загрязнением поверхностных вод суши по гидробиологическим показателям производятся в 6 гидрографических районах на 133 водных объектах по 323 створам (программа наблюдений включает от 2 до 6 показателей);

– наблюдения за загрязнением морской среды по гидрохимическим показателям проводятся на 320 станциях в прибрежных районах 11 морей, омывающих территорию Российской Федерации (в отобранных пробах определяются до 24 ингредиента);

– наблюдения за загрязнением поверхностных вод суши по гидрохимическим показателям охвачены 1187 водных объектов (из них 1037 водотоков и 150 водоемов), на которых находится 1815 пунктов (2489 створов, 2826 вертикалей, 3260 горизонтов). В 2007 г. отбор проб по физическим и химическим показателям с одновременным определением гидрологических показателей проводился на 1716 пунктах (2390 створов);

– сеть станций, осуществляющих наблюдения за химическим составом и кислотностью осадков, состоит из 130 станций федерального уровня, отбирающих на химический анализ суммарные пробы, и 133 пунктов, в которых в оперативном порядке измеряется только величина рН (пробы осадков на содержание от 11 до 20 компонентов анализируются в 12 кустовых лабораториях);

– система контроля загрязнения снежного покрова осуществляется на 544 пунктах. В пробах определяются ионы сульфата, нитрата аммония, значения рН, а также бенз(а)пирен, тяжелые металлы.

Рис. 1. – Структура Росгидромета

Государственный мониторинг водных объектов в системе Минприроды России осуществляется в целях:

– своевременного выявления и прогнозирования развития негативных процессов, влияющих на качество вод и состояние водных объектов, разработки и реализации мер по предотвращению вредных последствий этих процессов;

– оценки эффективности осуществляемых водоохранных мероприятий;

– информационного обеспечения управления и контроля в области использования и охраны водных объектов.

Государственный мониторинг водных объектов включает:

– регулярные наблюдения за состоянием водных объектов, количественными и качественными показателями поверхностных и подземных вод;

– сбор, хранение, пополнение и обработку данных наблюдений;

– создание и ведение банков данных;

– оценку и прогнозирование изменений состояния водных объектов, количественных и качественных показателей поверхностных и подземных вод.

Государственный мониторинг водных объектов состоит из:

– мониторинга поверхностных водных объектов (ГМПВО);

– мониторинга подземных водных объектов (МПВО);

– мониторинга водохозяйственных систем и сооружений (ГМВХСиС).

В рамках осуществления Государственного мониторинга водных объектов организациями Росводресурсов и подрядными организациями осуществляется наблюдение за качеством воды в водных объектах на 1085 створах на водохранилищах, трансграничных и межсубъектовых створах.

Наблюдения выполняются на 1085 створах гидрохимических наблюдений, находящихся в зоне деятельности бассейновых водных управлений (БВУ), в том числе на трансграничных водных объектах в рамках межправительственных соглашений (60 створов); на водохранилищах (272 створа).

Гидрохимические наблюдения проводятся на участках интенсивного водопользования в районах водозаборов (питьевых, технических), устьев рек основных притоков, влияния выпусков сточных вод наиболее крупных водопользователей-загрязнителей, на малых реках с целью изучения эффективности ранее проведенных работ по восстановлению экологического состояния водотоков.

Перечень определяемых показателей загрязнения воды устанавливается с учетом обязательной программы при проведении режимных наблюдений за загрязнением поверхностных вод суши и характерных специфических загрязнений на отдельных участках водотоков (по достоверной информации формы 2-тп (водхоз) о сбросах загрязняющих веществ в водные объекты).

Контроль качества воды

Первый этап организации работ по наблюдению и контролю качества поверхностных вод – выбор местоположения пунктов контроля.

При этом пункты контроля организуют, прежде всего, на водоемах и водотоках, имеющих большое хозяйственное значение, а также подверженных значительному загрязнению сточными водами.

На незагрязненных сточными водами водоемах и водотоках создают пункты фоновых наблюдений.

В пунктах контроля организуют один или несколько створов, с учетом гидрометеорологических и морфологических особенностей водоема или водотока.

Перечень наблюдаемых ингредиентов и показатели качества воды определяются, главным образом, составом и объемом сточных вод, их токсичностью и требованиями, предъявляемыми со стороны потребителей воды.

Обязательным для всех пунктов является определение температуры воды, взвешенных частиц, минерализации, цветности, рН, растворенного кислорода, БПК, ХПК, запаха, биогенных компонентов (C, H, N, P, Si, Fe, Mn).

Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ.

Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей.

К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое кол-во органических веществ, растворимых в воде.

Уровень солесодержания в питьевой воде обусловлен качеством воды в природных источниках (которые существенно варьируются в разных геологических регионах вследствие различной растворимости минералов).

В зависимости от минерализации природные воды можно разделить на следующие категории (табл. 1):

Таблица 1

Категория водМинерализация, г/дм3
Ультрапресные< 0.2
Пресные0.2 – 0.5
Воды с относительно повышенной минерализацией0.5 – 1.0
Солоноватые1.0 – 3.0
Соленые3 – 10
Воды повышенной солености10 – 35
Рассолы> 35

Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (особенно когда соль используется для борьбы с обледенением дорог) и т.п.

По данным Всемирной Организации Здравоохранения надежные данные о возможном воздействии на здоровье повышенного солесодержания отсутствуют. Поэтому по медицинским показаниям ограничения ВОЗ не вводятся. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л.

Цветность воды – показатель, характеризующий интенсивность окраски воды. Цветность воды выражается в градусах платинокобальтовой шкалы и определяется путем сравнения окраски испытываемой воды с эталоном.

Водородный показатель характеризует концентрацию свободных ионов водорода в воде.

Для удобства отображения был введен специальный показатель, названный рН и представляющий собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -log[H+].

Если говорить проще, то величина рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН-, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН 9.5

pH воды – один из важнейших рабочих показателей качества воды, во многом определяющих характер химических и биологических процессов, происходящих в воде. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д.

Контроль за уровнем рН особенно важен на всех стадиях водоочистки, так как его “уход” в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Оптимальная требуемая величина рН варьируется для различных систем водоочистки в соответствии с составом воды, характером материалов, применяемых в системе распределения, а также в зависимости от применяемых методов водообработки.

Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3.

Поэтому ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи.

Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

Окисляемость – это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей. Выражается этот параметр в миллиграммах кислорода, пошедшего на окисление этих веществ, содержащихся в 1 дм3 воды.

Различают несколько видов окисляемости воды: перманганатную, бихроматную, иодатную, цериевую. Наиболее высокая степень окисления достигается бихроматным и иодатным методами.

В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах – как правило, бихроматную окисляемость (называемую также ХПК – “химическое потребление кислорода”).

Окисляемость является очень удобным комплексным параметром, позволяющим оценить общее загрязнение воды органическими веществами.

Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием внутриводоемных биохимических процессов, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод.

Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды. Поверхностные воды имеют более высокую окисляемость (а значит и более “богаты” органикой) по сравнению с подземными.

Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные – 5-12 мг О2/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3.

Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2/дм3 (исключения составляют воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях).

В поверхностных водах величины бпк5 изменяются обычно в пределах 0,5-4 мг o2/дм3 и подвержены сезонным и суточным колебаниям

Сезонные колебания зависят в основном от изменения температуры и от исходной концентрации растворенного кислорода.

Влияние температуры сказывается через ее воздействие на скорость процесса потребления, которая увеличивается в 2-3 раза при повышении температуры на 10oC.

Влияние начальной концентрации кислорода на процесс биохимического потребления кислорода связано с тем, что значительная часть микроорганизмов имеет свой кислородный оптимум для развития в целом и для физиологической и биохимической активности.

Суточные колебания величин БПК5 также зависят от исходной концентрации растворенного кислорода, которая может в течение суток изменяться на 2,5 мг О2/дм3 в зависимости от соотношения интенсивности процессов его продуцирования и потребления. Весьма значительны изменения величин БПК5 в зависимости от степени загрязненности водоемов.

Таблица 3. – Величины БПК5 в водоемах с различной степенью

загрязненности

Степень загрязнения (классы водоемов)БПК5, мг O2/дм3
Очень чистые0,5-1,0
Чистые1,1-1,9
Умеренно загрязненные2,0-2,9
Загрязненные3,0-3,9
Грязные4,0-10,0
Очень грязные10,0

Для водоемов, загрязненных преимущественно хозяйственно-бытовыми сточными водами, БПК5 составляет обычно около 70% БПКп.

В зависимости от категории водоема величина БПК5 регламентируется следующим образом: не более 3 мг O2/дм3 для водоемов хозяйственно-питьевого водопользования и не более 6 мг O2/дм3 для водоемов хозяйственно-бытового и культурного водопользования. Для морей (I и II категории рыбохозяйственного водопользования) пятисуточная потребность в кислороде (БПК5) при 20оС не должна превышать 2 мг O2/дм3.

В настоящее время оценка качества вод затруднена, так как она основывается на сравнении средних концентраций, наблюдаемых в пунктах контроля, с нормативными ПДК для каждого компонента. Особое затруднение возникает при необходимости отразить тенденцию изменения качества водного объекта за продолжительный период.

В связи с этим предпринимаются попытки комплексной оценки качества вод по абиотическим критериям. Одним из наиболее удачных подходов в этом направлении является метод, использующий в качестве критерия индекс загрязнения водИЗВ.

ИЗВ характеризуют среднее содержание основных загрязняющих веществ в долях ПДК и кислородный режим водоема.

В число показателей, используемых для расчета ИЗВ, обязательно включается кислород. Оставшиеся параметры (три для морских и пять для речных вод) – это концентрации загрязняющих веществ, содержание которых в долях ПДК наибольшее. В соответствии с полученным значением индекса ИЗВ определяется качество воды (табл. 4).

Таблица 4. – Критерии качества воды на основании индекса ИЗВ

Класс качестваТекстовое описаниеВеличина ИЗВ
1Очень чистая10

Более действенным является контроль за качеством воды, осуществляемый с помощью автоматических приборов.

Электрические датчики постоянно измеряют концентрации загрязнений, что способствует быстрому принятию решений в случае неблагоприятных воздействий на источники водоснабжения.

Автоматизированная станция может измерять и контролировать показатели качества воды (степень кислотности или щёлочности, электропроводимость, температуру, мутность, содержание растворённого кислорода), уровень воды, а также наличие взвешенных веществ и ионов некоторых металлов.

Сравнение анализа водных проб, забранных несколькими станциями, расположенными по течению реки, даёт возможность выявить непосредственного виновника загрязнения. Это особенно важно при залповых сбросах вредных веществ, когда своевременно принятые меры могут локализовать или уничтожить загрязнение в относительно короткий срок.

Мониторинг подземных водных объектов

водный загрязнение гидрохимический подземный

Мониторинг подземных вод (МПВ) является одной из основных и наиболее разработанных подсистем государственного мониторинга состояния недр (ГМСН).

Организация и осуществление ГМСН обеспечивается Федеральным агентством по недропользованию (Роснедра).

Источник: https://otherreferats.allbest.ru/ecology/00094620_0.html

Понятие экологического мониторинга. Контроль гидросферы

Контроль загрязнения водной среды (гидросферы)

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ

Биосфера Земли подвергается постоянным изменениям под влиянием естественных (природных) и искусственных (антропогенных) воздействий. Естественные воздействия могут рассматриваться как фоновые.

Искусственные антропогенные воздействия подразделяются на намеренные (разработка полезных ископаемых, развитие теплоэнергетики и др.

) и ненамеренные, носящие как правило негативный характер (деградация земель, загрязнение атмосферы, отторжение лесных массивов и другие).

Для контроля за изменениями окружающей среды под воздействием естественных и антропогенных факторов осуществляется мониторинг биосферы.

Термин «мониторинг» происходит от латинского слова monitor – напоминающий, надзирающий.

Таким образом, экологический мониторинг – непрерывный контроль за состоянием окружающей среды и использованием основных природных ресурсов (воды, воздуха, почвы, растительного и животного мира).

Экологический мониторинг возник при попытке разделить естественные и антропогенные изменения окружающей природной среды; он является информационной системой, созданной с целью наблюдения и прогнозов изменений в окружающей природной среде для выделения антропогенной составляющей на фоне естественных процессов.

МОНИТОРИНГ ГИДРОСФЕРЫ ЗЕМЛИ Наблюдения за состоянием гидросферы являются частью общей системы наблюдений за окружающей природной средой (рис. 1).

Основная работа по организации и осуществлению наблюдений, сбора и обработки информации о состоянии гидросферы выполняется национальными метеорологическими, гидрологическими, геологическими службами и водохозяйственными организациями стран всего мира..

В настоящее время на земном шаре действует около 9000 станций на суше, производящих наблюдения за влажностью воздуха, облачностью, количеством выпадающих атмосферных осадков (из них 350 — автоматизированы или частично автоматизированы).

Около 700 морских судов также производят наблюдения за различными параметрами состояния вод Мирового океана (температура, соленость и минеральный состав вод, направление течений и т.д.). Эти данные дополняются наблюдениями с коммерческих самолетов (около 10 000 сводок в сутки).

Передают информацию и 300 заякоренных буев или фиксированных платформ, работающих как автоматические морские станции, и около 600 буев, дрейфующих с океанскими течениями.

Огромный прогресс в области метеорологических спутников и автоматизированных наблюдательных систем за последние 30 лет позволяет иметь на орбите вокруг Земли одновременно четыре-пять оснащенных приборами полярно-орбитальных спутников с оборудованием автоматической передачи дважды в сутки изображений облачности над всей поверхностью Земли.

Они проводят также глобальные наблюдения за влажностью воздуха, температурой поверхности моря и суши, распределением снежного и ледового покрова (рис. 2).

Вторая система геостационарных или геосинхронных спутников, находящихся над экватором и вращающихся с той же скоростью, что и Земля, и, таким образом, являющихся «стационарными» по отношению к ней, непрерывно предоставляет метеорологическую информацию по тем же районам.

Системы передачи данных наблюдений Используются различные системы передачи данных от пунктов наблюдений: ручная — полуавтоматическая (по радио или телефонному запросу), временная автоматическая (запрограммированная на передачу по телефону или радио), автоматический индикатор (передача по телефону или радио при изменении параметра на определенную величину), автоматическая (передача по кабелю, телефону или радио сигналов с преобразованием и записью измеряемого параметра), полностью автоматическая (с удаленных станций, оборудованных радиопередатчиком), а также по почте. Автоматические системы передачи находят все более широкое применение. Обработка, хранение и обобщение информации Большие объемы собираемой информации и требования к сокращению сроков ее предоставления потребителям обусловливают необходимость использования для ее обработки и обобщения современной электронной техники. Наиболее общая схема автоматизированной обработки, хранения и обобщения информации о состоянии гидросферы представлена на рис. 1, б. Особенности построения систем и компьютерных технологий обработки данных зависят от методики наблюдений за различными параметрами гидросферы, оперативности передачи и обобщения информации, технических возможностей национальных служб, природных особенностей территорий. Для хранения и автоматизации обобщения информации создаются специальные обслуживающие центры — банки данных. В странах с небольшой по площади территорией принято создавать единые банки для всех компонентов гидросферы или два-три банка, собирающих информацию по атмосферным компонентам гидросферы, водным объектам суши, Мирового океана (включая окраинные и внутренние моря, морские устья рек). Большое количество информации и значительная протяженность территории России обусловили необходимость создания распределенных по видам информации и территории банков данных. Например, в единой системе государственного водного кадастра России при научно-исследовательских институтах созданы банки данных «Реки и каналы», «Озера и водохранилища», «Моря и морские устья рек», «Качество поверхностных вод», «Подземные воды», «Использование вод», «Ледники». Создаются также видовые центральные банки данных по атмосферным осадкам, снежному покрову и снежникам в горах, по влагозапасам в почве и испарению с суши, а также интегральные банки по компонентам гидросферы в территориальных центрах по гидрометеорологии, подземным водам. Использование единых требований к форматам хранения данных и создания программных средств облегчает управление базами данных, обобщение и распространение информации среди многочисленных потребителей. Для систематизации, анализа и выдачи по запросам пользователей разнообразных данных перспективно использование единых геоинформационных систем, реализуемых на персональных компьютерах

70. Понятие экологического мониторинга. Контроль атмосферы. Мониторинг атмосферного воздуха — слежение за его состоянием и предупреждение о критических ситуациях, вредных или опасных для здоровья людей и других живых организмов.
ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ Биосфера Земли подвергается постоянным изменениям под влиянием естественных (природных) и искусственных (антропогенных) воздействий. Естественные воздействия могут рассматриваться как фоновые. Искусственные антропогенные воздействия подразделяются на намеренные (разработка полезных ископаемых, развитие теплоэнергетики и др.

) и ненамеренные, носящие как правило негативный характер (деградация земель, загрязнение атмосферы, отторжение лесных массивов и другие). Для контроля за изменениями окружающей среды под воздействием естественных и антропогенных факторов осуществляется мониторинг биосферы. Термин «мониторинг» происходит от латинского слова monitor – напоминающий, надзирающий.

Таким образом, экологический мониторинг – непрерывный контроль за состоянием окружающей среды и использованием основных природных ресурсов (воды, воздуха, почвы, растительного и животного мира). Экологический мониторинг возник при попытке разделить естественные и антропогенные изменения окружающей природной среды; он является информационной системой, созданной с целью наблюдения и прогнозов изменений в окружающей природной среде для выделения антропогенной составляющей на фоне естественных процессов. Мониторинг атмосферного воздуха — слежение за его состоянием и предупреждение о критических ситуациях, вредных или опасных для здоровья людей и других живых организмов. Для обеспечения мониторинга в развитых странах созданы автоматизированные системы контроля загрязнения воздуха (АСКЗВ). Задачи, решаемые АСКЗВ: 1. автоматическое наблюдение и регистрация концентраций загрязняющих веществ; 2. анализ полученной информации с целью определения фактического состояния загрязнения воздушного бассейна;3. принятие экстренных мер по борьбе с загрязнением;4. прогноз уровня загрязнения;5. выработка рекомендаций для улучшения состояния окружающей среды;6. уточнение и проверка расчетов рассеивания примесей. АСКЗВ рассчитаны на измерение концентраций одного или нескольких

ингредиентов из следующего ряда: SO2; CO; NOx; O3; CmHn; H2S; NH3; взвешенных веществ, а также определения влажности, температуры, направления и скорости ветра.

Сейчас происходит постоянное развитие АСКЗВ путем увеличения числа стационарных станций и применения передвижных постов наблюдений.

Дальнейшее совершенствование этой системы становится возможным благодаря пониманию необходимости глобального контроля над состоянием атмосферы путем объединения локальных, региональных и национальных служб наблюдения за атмосферой.

71. Понятие экологического мониторинга и схема его осуществления.

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ

Биосфера Земли подвергается постоянным изменениям под влиянием естественных (природных) и искусственных (антропогенных) воздействий. Естественные воздействия могут рассматриваться как фоновые.

Искусственные антропогенные воздействия подразделяются на намеренные (разработка полезных ископаемых, развитие теплоэнергетики и др.

) и ненамеренные, носящие как правило негативный характер (деградация земель, загрязнение атмосферы, отторжение лесных массивов и другие).

Для контроля за изменениями окружающей среды под воздействием естественных и антропогенных факторов осуществляется мониторинг биосферы.

Термин «мониторинг» происходит от латинского слова monitor – напоминающий, надзирающий.

Таким образом, экологический мониторинг – непрерывный контроль за состоянием окружающей среды и использованием основных природных ресурсов (воды, воздуха, почвы, растительного и животного мира).

Экологический мониторинг возник при попытке разделить естественные и антропогенные изменения окружающей природной среды; он является информационной системой, созданной с целью наблюдения и прогнозов изменений в окружающей природной среде для выделения антропогенной составляющей на фоне естественных процессов.

Мониторинг осуществляется по следующей схеме:

С одной стороны:

1.наблюдение,

2.оценка наблюдения,

3.регулирование качества окружающей среды.

С другой стороны:

1.прогноз,

2.оценка прогноза,

3.регулирование качества окружающей среды.

При этом на основе оценки наблюдения, оценки прогноза и способов регулирования качества окружающей среды производится корректирование методов наблюдения с целью повышения их достоверности и информативности.

Задачами экологического мониторинга как правило являются:

– выбор места проведения наблюдений,

– аппаратурное обеспечение проведения наблюдений,

– систематизация полученных результатов наблюдений.

Различают следующие виды мониторинга:

– мониторинг зон (города, водоемы, лесные массивы и др.),

– мониторинг сред (атмосферный воздух, вода водоемов и др.),

– мониторинг примесей (контроль за содержанием различных веществ),

– мониторинг источников (контроль предприятий).

При проведении экологического мониторинга используется понятие ПРЕДЕЛЬНО-ДОПУСТИМОЙ ЭКОЛОГИЧЕСКОЙ НАГРУЗКИ (ПДЭН) , под которой понимают такое воздействие, которое либо не влияет на качество окружающей среды, либо изменяет его в допустимых пределах, то есть не нарушает экосистему и не вызывает отрицательных последствий у живых организмов и в первую очередь – у человека.

Различают следующие уровни мониторинга:

– фоновый,

– промежуточный,

– импактный (от слова impact – столкновение, то есть контроль в месте выброса каких-либо загрязнений).

Экологический мониторинг предусматривает постоянный контроль за состоянием атмосферы, гидросферы, литосферы (прежде всего – почвы), биоты, радиационный мониторинг и др.

При контроле за атмосферой проводится оценка комплексного влияния различных загрязняющих веществ.

Количество различных загрязняющих веществ сравнивается с ПРЕДЕЛЬНО-ДОПУСТИМЫМИ КОНЦЕНТРАЦИЯМИ (ПДК), под которыми понимают такие концентрации, которые при постоянном воздействии не вызывают различных заболеваний у человека при жизни настоящего и последующего поколений и не приводят к изменениям в экосистемах.

Различают: ПДК в атмосферном воздухе населенных мест (среднесуточные – при воздействии более 20 минут и максимально-разовые – при воздействии более 20 минут), а также ПДК воздуха рабочей зоны (места работы человека). ПДК измеряются в мг/м3 .

По характеру воздействия на организм человека различают следующие виды вредных (загрязняющих) веществ:

общетоксичные , которые вызывают отравление всего организма (например, окись углерода),

раздражающие , которые вызывают раздражение дыхательных органов, слизистых оболочек (например, сернистый газ, окислы азота),

сенсабилизирующие , которые вызывают аллергические заболевания (например, формальдегид),

канцерогенные , которые вызывают онкологические заболевания (например, соединения никеля, окислы хрома),

фиброгенные , которые вызывают заболевания легких (например, окись алюминия, двуокись кремния),

мутагенные , которые вызывают изменение наследственной информации (например, свинец, марганец).

По степени опасности воздействия вредные вещества подразделяются на четыре класса:

– 1 класс (чрезвычайно-опасные),

– 2 класс (высокоопасные),

– 3 класс (умеренно-опасные),

– 4 класс (малоопасные).

По усредненным концентрациям 5 наиболее важных для данного региона веществ и сравнении их с ПДК, можно определить индекс загрязнения атмосферы (ИЗА).

Для водной среды (гидросферы) проводится контроль за уровнем загрязнений по физическим, химическим (сравнение с ПДК загрязнителей воды в мг/л) и гидробиологическим характеристикам.

Для оценки антропогенного воздействия на биоту (экосистемы) пользуются понятием устойчивого биогеоценоза, для которого выделяют пять признаков:

21. Биомасса всех основных звеньев трофических цепей должна быть большой, без резкого преобладания фитомассы над зоомассой.

22. Большой биомассе должна соответствовать большая продуктивность, что создает предпосылки для быстрой компенсации возможных потерь на отдельных трофических уровнях.

23. Структура системы в целом и разнородность отдельных трофических уровней должны обеспечивать высокую стабильность биогеоценоза, находящегося в состоянии динамического равновесия.

24. Обмен веществами и энергией в биогеоценозе должны протекать с высокой скоростью, что создает условия для большой скорости самоочищения.

25. Биогеоценоз должен обладать способностью к быстрой адаптации при изменении внешней среды.

Таким образом, экологический мониторинг является важнейшим инструментом при контроле антропогенных воздействий на биосферу в целом.

72. Особенности ликвидации жидких радиоактивных отходов.

Источник: https://studopedia.su/15_68887_ponyatie-ekologicheskogo-monitoringa-kontrol-gidrosferi.html

Контроль загрязнения водной среды (гидросферы): Наука, изучающая гидросферу Земли, ее свойства, протекающие в ней

Контроль загрязнения водной среды (гидросферы)

Наука, изучающая гидросферу Земли, ее свойства, протекающие в ней процессы, называется гидрологией. Раздел гидрологии, посвященный методам и приборам для определения характеристик природных вод, а также их обработке, называется гидрометрией. Явления и процессы, протекающие в природных водах, тесно связаны с атмосферными явлениями.

В частности, условия и формы движения воды зависят от атмосферных осадков. Наука, изучающая процессы, имеющие отношение как к атмосферному, так и к гидрологическому режиму Земли, называется гидрометеорологией.

Важнейшими характеристиками водной среды является уровень воды, глубина водоема, скорость водотока, температура, цвет водной поверхности, степень минерализации (солености), биомасса и другие характеристики.

Система наблюдений за состоянием и качеством водной среды относится к области гидрометеорологии и осуществляется на соответствующих постах наблюдения — гидрометеорологических станциях Так, например, слежение за уровнем воды осуществляется на многочисленных водомерных постах с использованием водомерных реек, а также различных самописцев.

В труднодоступных районах устанавливают дистанционные водомерные посты с самописцами уровня. Преимущество использования самописцев заключается в том, что они дают возможность получать информацию об уровне воды непрерывно. Дистанционные водомерные посты кроме самописцев уровня имеют еще и передающие устройства, основанные на радио- или электросвязи.

Регистрация уровня на них может производиться самописцами различного устройства: поплавковыми, манометрическими, радиоактивными. Схема радиоактивного уровнемера показана на рис. 43. Принцип его действия основан на поглощении радиоактивного излучения приемником, по изменению интенсивности которого измеряют колебания уровня. Рис. 43.

Схема радиоактивного уровнемера: 1 — источник радиоактивного излучения; 2 — счетное устройство; 3 — приемник излучения; 4 — поплавок Глубину водоема измеряют как в отдельных точках с помощью наметки, лота, так и непрерывно — профилографами. Наметка представляет собой шест диаметром около 5 см, длиной 5—7 м с дециметровыми делениями.

На нижний конец наметки надевается стальной башмак, помогающий погружать наметку в воду и предохраняющий ее от повреждений при ударах о дно. При глубине более 5 м используется ручной или механический лот. Лот представляет собой гибкий трос или шнур с разметкой, на конце которого прикреплен груз.

Для непрерывного дистанционного контроля глубины водоема используют профилографы, которые по принципу действия делятся на механические, гидростатические и акустические. Механический профилограф измеряет глубину с помощью промерного груза на тросе или промерной штанги, перемещается по дну с передачей результатов на записывающий механизм с часовым заводом. Гидростатические профилографы производят замер глубин с помощью чувствительного датчика давления, перемещаемого на тросе по дну. Существующие гидростатические профилографы рассчитаны на промеры глубин до 15 м. Акустические профилографы основаны на использовании эхолота.

В настоящее время акустические профилографы нашли широкое применение, так как обеспечивают высокую точность промерных работ. Акустические профилографы основаны на принципе измерения времени прохождения в воде ультразвукового импульса (рис. 44).
Рис. 44. Схема измерения глубин профилографом: В.И. — вибратор-излучатель; В.П. — вибратор-приемник; 1 — прямой сигнал; 2 — отраженный сигнал Для измерения скорости течения рек используется поплавковый метод с применением поверхностных, глубинных и интеграционных поплавков, а также гидрометрических вертушек. Принцип действия последних заключается в измерении частоты вращения ротора при обтекании его с разных сторон водой реки. Контроль загрязнения водной среды дистанционными неконтактными методами осуществляется с помощью аэрофотосъемки. Полученные из космоса фотографии и телевизионные изображения широко используются при изучении загрязнения Мирового океана, структуры и направлений морских течений, ледового покрова, таяния льдов и др. На фотографиях четко видны снеговые и ледовые покрытия. Определение соотношения территорий, покрытых и не покрытых снегом, представляет большой интерес для прогноза паводков. Снимки дают возможность устанавливать заливаемые водой поймы и дельты рек, древние русла, качество воды в крупных водоемах и водотоках. Анализ снимков позволяет охарактеризовать засоленность прибрежных зон, водную эрозию, области выхода подземных вод на поверхность. Всемирная гидробиологическая служба, созданная на базе орбитальных станций, дает возможность получить исчерпывающие представления о водных ресурсах Земли и выбрать научные рекомендации их расходования, что весьма важно, так как человечество стоит перед опасностью хронического водного голода и уже теперь в некоторых странах ощущается нехватка воды. Загрязнение Мирового океана — один из аспектов общей проблемы загрязнения водной среды. К числу главных источников загрязнения океана следует отнести: нефть, бытовые и сельскохозяйственные стоки, радиоактивные вещества. Одним из показателей загрязнения воды является изменение ее температуры. Измерение температуры водной поверхности осуществляется активными радиолокационными методами с использованием радиолокаторов. Температура водной поверхности фиксируется детектором с точностью, не превышающей + 0,5°С. Измерение температуры проводят радиояркостным методом, основанным на измерении тепла, излучаемого водной средой, посредством радиоволн от видимого (400—760 нм) до метрового диапазона, мощность которого преобразуется в температуру. К числу наиболее вредных химических загрязнений Мирового океана относятся нефть и нефтепродукты. Количество поступающей за год в Мировой океан нефти оценивается в 5—10 млн. т. Особенно высоко содержание нефтепродуктов в прибрежных зонах и в обширных, относительно малоподвижных районах океана, куда они заносятся течением. Нефтяные загрязнения поверхностных вод подвергаются дистанционному контролю, методы которого определяют площадь покрытия, толщину слоя, примерный химический состав, пространственно-временную динамику этих параметров. Наиболее перспективными дистанционными неконтактными методами контроля нефти являются лазерный флюоресцеигный, радиометрический и некоторые другие. Лазерный флюоресцентный метод основан на поглощении нефтяной пленкой светового потока (оптических волн), испускаемого лазером, и появления над поверхностью пленки свечения, которое принимается датчиком в виде спектров свечения, причем спектры свечения различных фракций нефти (легких, тяжелых) характеризуются разными длинами волн. Хорошо зарекомендовавшим себя устройством для выявления всех видов масел, находящихся в море, в условиях ясной погоды оказался инфракрасный датчик, работающий в спектральном интервале 8—14 мкм. Основным и важным качественным показателем Мирового океана является его первичная продуктивность. Последняя обусловлена количеством фитопланктона и его биомассой. Биомассу измеряют по содержанию хлорофилла, поскольку существует связь между этими величинами. Для этой цели применяют спектрографические и спектрометрические методы, основанные на отражении видимого света или лазерного излучения от фитопланктона, включая также флюоресцентное излучение. Весьма перспективным методом определения концентрации хлорофилла является флюоресцентный метод, суть которого состоит в анализе спектра отраженного сигнала и сравнении площадей спектральных полос флюоресценции хлорофилла и водной среды. Отношение этих величин пропорционально отношению концентраций хлорофилла и молекул воды. На сегодня уже имеется набор данных «спектр возбуждения — спектр флюоресценции», по которым можно судить о возможностях неконтактного контроля хлорофилла по его флюоресценции и, в частности, установлен факт, что вода как таковая собственной флюоресценцией не обладает. Кроме того, по изменениям форм спектра фотолюминесценции при соответствующих изменениях возбуждающей длины волны можно качественно характеризовать состав флюоресцирующего фитопланктона, по свечению в УФ-свете определять соотношение физиологически наиболее активных, ослабленных и неактивных (мертвых) хлорофиллсодержащих клеток. Особую актуальность приобретает дистанционный мониторинг водных экосистем в связи с антропогенным воздействием на них. Результаты такого воздействия сказываются и в центральных частях акватории Мирового океана, где без дистанционных методов невозможно получить необходимую информацию.

Значительная часть всех измерений и исследований выполняется непосредственно на поверхности океана с помощью научно-исследовательских кораблей, а также радиотелеметрических океанографических буев.

На последних устанавливаются датчики для измерения требуемых параметров, источники питания, устройства для записи информации и радиоаппаратура для передачи данных по радиоканалам на судовые или наземные приемные станции.

Такие средства контроля открывают возможность в ближайшей перспективе регулярно и достаточно быстро обследовать всю акваторию Мирового океана и с помощью автоматизированных систем собирать и передавать информацию в наземные центры. 

Источник: Денисов В.В., Гутенев В.В., Луганская И.А. и др. Экология.. 2002

Источник: https://bookucheba.com/uchebniki-ekologii_1295/kontrol-zagryazneniya-vodnoy-sredyi-50733.html

NewEcologist.ru >> Критерии оценки качества воды. Структура ПДС. Методы контроля загрязнения гидросферы. :: Анализ и прогносз загряднений окружающей среды :: Материалы студентам (рефераты, курсовые, дипломные)

Контроль загрязнения водной среды (гидросферы)

Мониторинг загряз. гидросферы

Водные объекты: на 3 категории: Все подробности t8 у нас.

1. ист. централизованного хоз-питьевого водоснабжения, водоснабжения пред-ий пищевой промыш.;

2. водоёмы используемые в культурно-быт-х целях насел., рекреации, спорта, купания, а т.ж в пределах насел. пунктов.

3. водоёмы рыбохозяйственные: – высшая категория – нерестилища; І категория – ниже, по течению реки; ІІ категория – лиманы, устья рек.

В практике ПДК производят сразу для первых 2-х категорий.

Критерии оценки качества воды.

Определяют санитарные показатели свойств воды: – плавающие примеси (пятна масел); – запахи, окраска, температура, жесткость Рн (6,5-8,5), минеральный состав по сухому остатку, растворенный кислород, БПК (І категории не более 3,0мгО2/л, ІІ категории не более 6,0мгО2/л), ХПК (І категории не менее 15,0мгО2/л, ІІ категории менее 30,0мгО2/л).

Загрязнение питьевой воды и водоисточников питьевого и рекреационного назначения рассматривается по санитарным показателям (коли-индекс, патогенные микроорганизмы, возбудители паразитарных болезней и микроментозы человека) и содержанию хим. веществ. Санитар. показатели оцениваются по числу встречаемости зараженных проб или по числу возбудителей в пробе.

Концентрации хим. веществ соотносятся с ПДК. Заключение о степени санитарно-экологического неблагополучия м.б сделано исходя из стабильного сохранения негативных значений ведущих показателей на протяжении не менее одного года и на основании нескольких критериев, за исключением особо опас. в-в, когда выводы делаются т/ко по факту их концентрации в воде.

Основными стандартными методами контроля над

сост. загрязнения вод яв-ся опред. хим. потребления О2 (ХПК) и биохимического

потребления О2 (БПК).

ХПК — величина, характеризующая общее содержание в загрязненной воде орг. и неорг. восстановителей, реагирующих с сильными окислителями. Значение ХПК выражают в единицах кол-ва О2, расходуемого на окисление. БПК – оценивается кол-вом О2, затраченного на окисление находящихся в воде орг.

в-в в аэробных условиях в результате биолог. процессов, происходящих в загрязненной воде. При относительной простоте и доступности указанных методов достичь высокой точности определения концентрации загрязнений невозможно.

А такие соединения, как толуол, бензол не окисляются, следовательно, определить их наличие в воде этими методами невозможно.

При анализе состава вод, в т.ч. и сточных, чаще всего применяют такие методы, к/е дают возможность определить широкий спектр хим. в-в. Это атомно-эмиссионный, рентгеновский, хромотографические методы. Имеются в промыш. производстве и приборы-автоматы, применяемые для проведения анализов природных и техногенных вод.

Мониторинг поверхностных вод

– это точка на водном объекте по к/й производится комплекс работ в категории пункта контроля

Есть 4 категории: 1-я располагаются в районе городов с населением выше 1 млн. чел. в местах нереста особо ценных рыб в районах организованного сброса сточ. вод, в силу чего наблюдается высокая загрязнённость воды;

2-я в районах городов с населением от 500 тыс. В районах важного рыбного значения. В местах нереста и зимовья особо ценных рыб. В районах организованного сброса сточных вод (превышение ПДК)

3-я: устанавливается в районах городов с населением менее 500000 чел на замыкающих створах в речных системах в речных системах или в море.

4-я: в пределах ООПТ, скотомогильники, места выруба лесов

Категории пунктов влияют на чистоту отбора проб воды и на полноту ингредиентов

Понятие створа

наблюдения

– это условное поперечная линия, пересекающая объект. Расположение створа наблюдения зависит от гидрологических особенностей в зависимости от организованных выпусков сточ. вод и интересов водопользователя.

На водотоках устанавливают только один створ наблюдения там, где более загрязнённый участок реки впадает в другой водоём. При этом один створ наблюдения располагается выше источника ЗВ.

Перейти на страницу: 1 2 3

Источник: http://www.newecologist.ru/ecologs-990-1.html

Загрязнение водного бассейна и контроль за состоянием гидросферы

Контроль загрязнения водной среды (гидросферы)

• возможно заражение человека микробами, вирусными или паразитарными возбудителями заболеваний (в результате потребления недостаточно обеззараженной питьевой воды или других форм контакта с водой);
   • возможно попадание в организм химических или радиоактивных веществ в связи с загрязнением питьевого водоисточника сточными водами, а также при аварийных ситуациях.

Загрязнение вод проявляется в изменении физических и органолептических свойств (нарушение прозрачности, окраски, запахов, вкуса), увеличении содержания сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращении растворенного в воде кислорода воздуха, появлении радиоактивных элементов, болезнетворных бактерий и других загрязнителей.

   Россия обладает одним из самых высоких водных потенциалов в мире — на каждого жителя России приходится свыше 30000 м3/год воды.

Однако в настоящее время из-за загрязнения или засорения около 70% рек и озер России утратили свои качества как источника питьевого водоснабжения, в результате около половины населения потребляет загрязненную недоброкачественную воду.

Природные водоёмы не являются естественной средой обитания болезнетворных микроорганизмов. В отличие от них бытовые сточные воды всегда содержат различные микроорганизмы, часть которых может быть болезнетворными.

О потенциальной опасности распространения с водой кишечных инфекций судят по присутствию в ней так называемых индикаторных микроорганизмов, прежде всего кишечной палочки коли.

По гигиеническим нормативам в питьевой воде допускается присутствие в 1 л не более 3 кишечных палочек  Доказано, что после обеззараживании воды хлором, ультрафиолетовыми лучами, озоном или гамма-излучением при содержании в ней кишечной палочки порядка трёх в литре вода уже не содержит жизнеспособных микробных возбудителей брюшного тифа, дизентерии и других. Однако устойчивость болезнетворных вирусов выше, чем кишечной палочки. Полную уверенность в обеззараживании питьевой воды в настоящее время может дать только её кипячение.

В водах, содержащих фекальные массы, растительные или животные остатки, поступающие с предприятий пищевой промышленности, бумажные волокна и остатки целлюлозы от предприятий целлюлозно-бумажной промышленности, процессы разложения протекают практически одинаково.

Поскольку аэробные бактерии используют кислород, первым результатом распада органических остатков является уменьшение содержания кислорода, растворенного в принимающих стоки водах. Оно изменяется в зависимости от температуры, а также в некоторой степени – от солености и давления.

Пресная вода при 20° C и интенсивной аэрации в одном литре содержит 9,2 мг растворенного кислорода. С повышением температуры воды этот показатель уменьшается, а при ее охлаждении – увеличивается.

В мелких водотоках с быстрым течением, где вода интенсивно перемешивается, поступающий из атмосферы кислород компенсирует истощение его запасов, растворенных в воде. Одновременно углекислый газ, образующийся при разложении содержащихся в сточных водах веществ, улетучивается в атмосферу.

Таким образом сокращается срок неблагоприятного воздействия процессов разложения органики. И наоборот, в водоемах со слабым течением, где воды перемешиваются медленно и изолированы от атмосферы, неизбежное уменьшение содержания кислорода и рост концентрации углекислого газа влекут за собой серьезные изменения.

Когда содержание кислорода уменьшается до определенного уровня, происходит замор рыбы и начинают погибать другие живые организмы, что, в свою очередь, приводит к увеличению объема разлагающейся органики.

   Большая часть рыб гибнет из-за отравления промышленными и сельскохозяйственными стоками, но многие – и от недостатка в воде кислорода. Рыбы, как и все живые существа, поглощают кислород и выделяют углекислый газ.

Если кислорода в воде мало, но высока концентрация углекислого газа, интенсивность их дыхания снижается (известно, что вода при высоком содержании угольной кислоты, т.е. растворенного в ней углекислого газа, становится кислой).

2. Последствия загрязнения гидросферы.

Загрязнение водных экосистем представляет огромную опасность для всех живых организмов и, в частности, для человека.

 Установлено, что под влиянием загрязняющих веществ в пресноводных экосистемах отмечается падение их устойчивости вследствие нарушения пищевой пирамиды и ломки сигнальных связей в биоценозе, микробиологического загрязнения, эвтрофирования и других крайне неблагоприятных процессов. Они снижают темпы роста гидробионтов, их плодовитость, а в ряде случаев приводят к их гибели.   Наиболее изучен процесс эвтрофирования водоемов.

Эвтрофизация – обогащение водоема биогенами, стимулирующее рост фитопланктона. От этого вода мутнеет, гибнут растения, сокращается концентрация растворенного кислорода, задыхаются обитающие на глубине рыбы и моллюски.

Этот естественный процесс, характерный для всего геологического прошлого планеты, обычно протекает очень медленно и постепенно, однако в последние десятилетия, в связи с возросшим антропогенным воздействием, скорость его развития резко увеличилась.

   Ускоренная, или так называемая антропогенная эвтрофизация связана с поступлением в водоемы значительного количества биогенных веществ — азота, фосфора и других элементов в виде удобрений, моющих веществ, отходов животноводства, атмосферных аэрозолей и т. д.

     Разрушение Балтийского моря происходит в результате процесса эвтрофизации (обогащения водоема биогенами, стимулирующими рост фитопланктона). Эта форма загрязнения характерна для водных пространств, в которых вода обновляется медленно. Таким является и практически закрытое Балтийское море. Эвтрофизация возникает тогда, когда море получает слишком много питательных веществ.

Эти вещества, в данном случае фосфор и азот, присутствующие в природе, также имеются в удобрениях и продуктах бытовой химии. Водоросли усваивают их и начинают стремительно размножаться. Одно из последствий этого “взрывного” размножения, все чаще наблюдаемого в летние месяцы, – исчезновение кислорода из глубинных вод.

Балтийское море имеет печальную репутацию самого загрязненного моря на планете. Судоходство здесь самое интенсивное в мире, и некоторые породы рыбы, которые здесь вылавливают, в частности сельдь и семга, запрещены к экспорту в страны Европейского союза. Процессы антропогенной эвтрофизации так же охватывают многие крупные озера мира — Великие Американские озера, Балатон, Ладожское, Женевское и др., а также водохранилища и речные экосистемы, в первую очередь малые реки.

   Помимо избытка биогенных веществ на пресноводные экосистемы губительное воздействие оказывают и другие загрязняющие вещества: тяжелые металлы (свинец, кадмий, никель и др.), фенолы, СПАВ и др.

Так, например, водные организмы Байкала, приспособившиеся в процессе длительной эволюции к естественному набору химических соединений притоков озера, оказались неспособными к переработке чуждых природным водам химических соединений (нефтепродуктов, тяжелых металлов, солей).

Скорости поступления загрязняющих веществ в Мировой океан в последнее время резко возросли. Ежегодно в океан сбрасывается до 300 млрд. м3 сточных вод, 90% которых не подвергается предварительной очистке.  

    Все более острый характер приобретают проблемы эвтрофирования и микробиологического загрязнения прибрежных зон океана. В связи с этим важное значение имеет определение допустимого антропогенного давления на морские экосистемы, изучение их ассимиляционной емкости как интегральной характеристики способности биогеоценоза к динамическому накоплению и удалению загрязняющих веществ.

  Для здоровья человека неблагоприятные последствия при использовании загрязненной воды, а также при контакте с ней (купание, стирка, рыбная ловля и др.) проявляются либо непосредственно при питье, либо в результате биологического накопления по длинным пищевым цепям типа: вода — планктон — рыбы — человек или вода — почва — растения — животные — человек, и др.

При непосредственном контакте человека с бактериальной загрязненной водой, а также при проживании или нахождении близ водоема различные паразиты могут проникнуть в кожу и вызвать тяжелые заболевания, особенно характерные для тропиков и субтропиков.

В современных условиях увеличивается опасность и таких эпидемических заболеваний как холера, брюшной тиф, дизентерия и др.

 Серьезнейшая экологическая проблема — восстановление водности и чистоты малых рек (т. е. рек длиной не более 100 км), наиболее уязвимого звена в речных экосистемах. Именно они оказались наиболее восприимчивыми к антропогенному воздействию.

Непродуманное хозяйственное использование водных ресурсов и прилегающих земельных угодий вызвало их истощение (а нередко и исчезновение), обмеление и загрязнение. В настоящее время состояние малых рек и озер, особенно в европейской части России, в результате резко возросшей антропогенной нагрузки на них, катастрофическое.

Сток малых рек снизился более чем наполовину, качество воды неудовлетворительное. Многие из них полностью прекратили свое существование.

      Санитарная канализационной системы объединяет все сточные трубы от расположенных в зданиях раковин, ванн и т.д., как ствол дерева объединяет все его ветви. Из основания этого «ствола» вытекает смесь всего, что попало в систему, – исходные сточные воды.

Так как мы используем огромный объем воды для удаления мизерных количеств отходов или просто льем ее без особой нужды, в первичных стоках на каждую часть отходов приходится примерно 1000 частей воды, т.е. в них 99,9% воды и 0,1% отходов. С добавлением ливневых вод разбавление еще более увеличивается.

Но отходы или загрязнители первичных стоков имеют огромное значение. Их подразделяют на три категории.

Мусор и песок. Мусор – это тряпки, пластиковые пакеты и прочие предметы, попадающие в систему из туалетов или через ливнестоки, если те еще не отделены. К песку условно относят и гравий; их приносят в основном ливнестоки.

Органическое вещество, или коллоиды. Это как живые организмы, так и неживая органика экскрементов, пищевых отходов и волокон тканей и бумаги. Термин коллоиды означает, что этот материал не оседает, а обычно остается взвешенным в воде.

Растворенные вещества. Это в основном биогены, такие как соединения азота, фосфора и калия из продуктов жизнедеятельности, обогащенные фосфатами из детергентов.

      Чтобы очистка была полной, водоочистные сооружения должны устранить все названные категории загрязнителей. Мусор и песок удаляются на этапе предочистки.

Сочетание первичной и вторичной очистки позволяет избавиться от коллоидного материала. Растворенные биогены устраняются при помощи доочистки.

      Необходимо также иметь в виду, что обработка стоков в каждом конкретном случае не обязательно должна включать в себя все четыре этапа. Чаще всего они дополняют друг друга в зависимости от обстоятельств.

Следовательно, в некоторых местах в водоемы все еще сбрасывают просто исходные стоки, в других – осуществляют только первичную их очистку, кое-где проводят вторичную, и лишь немного городов осуществляет доочистку водостоков.

      Предочистка. От мусора избавляются, пропуская исходные стоки через стержневую решетку, т.е. ряда стержней, расположенных на расстоянии около 2,5 см. друг от друга.

Затем мусор механически собирают с решетки и отправляют в специальную печь для сжигания.

Очищенная от мусора вода попадает в емкость, напоминающую плавательный бассейн, где движение воды замедляется настолько, что песок оседает; затем он механически извлекается оттуда и вывозится на свалку.

      Первичная очистка. После предочистки вода проходит первичную очистку – медленно пропускается через крупные баки, называемые первичными отстойниками. Здесь она в течение нескольких часов остается почти неподвижной. Это позволяет самым тяжелым частицам органического вещества, составляющим 30-50% его общего количества, осесть на дно, откуда их собирают.

В то же самое время жирные и маслянистые вещества всплывают к поверхности, и их снимают как сливки. Весь этот материал называется ил-сырец. Вода, покидающая первичные отстойники, все еще содержит 50-70% не осевших органических коллоидов и почти все растворенные биогены.

Вторичная очистка предусматривает устранение оставшегося органического вещества, но не растворенных питательных элементов.

      Вторичная очистка. Эту очистку называют также биологической, так как в ней участвуют живые естественные редуценты и детритофаги, потребляющие органическое вещество и в процессе дыхания превращающие его в воду и углекислый газ. Обычно применяются два типа систем: капельные биофильтры и активный ил.

В системах с капельным биофильтром вода разбрызгивается и стекает струйками по слою камней величиной с кулак, толщина которого 2-3 м. Организмы, случайно смытые с биофильтров, позднее устраняются из воды, когда она попадает во вторичные отстойники-емкости, аналогичные первичным отстойникам.

С отстоявшимся в них материалом поступают, как и с илом-сырцом. Пройдя первичную очистку и капельные биофильтры, сточные воды теряют 85-90% органического вещества. Все более широкое распространение получает еще один метод вторичной очистки – система активного ила.

В этом случае вода после первичной очистки поступает в резервуар, где могли бы разместиться несколько припаркованных друг за другом трейлеров. Смесь детритофагов, называемая активным илом, добавляется в воду, когда та поступает в резервуар. По мере движения создается богатая кислородом среда, идеальная для развития этих организмов.

В ходе их питания количество органического вещества, включая патогенные микроорганизмы, уменьшается. Покидая аэрационный резервуар, вода содержит множество детритофагов, поэтому ее направляют во вторичные отстойники.

Так как организмы обычно собираются в кусочках детрита, осадить их относительно несложно; осадок представляет собой тот же самый активный ил, который снова закачивают в аэрационный резервуар. Вода очищается от органического вещества на 90-95%.

     До двух последних десятилетий не ощущалось острой необходимости осуществлять дополнительную очистку воды уже после вторичной. Воду после нее просто дезинфицировали хлоркой и сбрасывали в естественные водоемы. Такая ситуация преобладает и сейчас. Однако по мере обострения проблемы эвтрофизации все больше городов вводят еще один этап – доочистку, устраняющую биогены.

      Доочистка. После вторичной очистки вода поступает на доочистку, устраняющую один или более биогенов. Для этого существует множество способов. На 100% воду можно очистить дистилляцией или микрофильтрованием. Очистка такого количества воды названными методами слишком расточительна, поэтому в настоящее время разрабатываются и внедряются более доступные способы.

Например, фосфаты можно устранить, добавив в воду известь (ионы кальция). Кальций вступает в химическую реакцию с фосфатом, образуя при этом нерастворимый фосфат кальция, который можно удалить фильтрованием. Если избыток фосфата – основная причина эвтрофизации, этого уже достаточно.

При соответствующей доочистке можно добиться того, что в конечном итоге получится вода, пригодная для питья.

      Дезинфекция. Какой бы тщательной очистке не подвергались сточные воды, обычно их все равно дезинфицируют хлорированием перед сбросом в естественные водоемы, чтобы уничтожить патогенные организмы, которые могли выжить. Использование для этого газообразного хлора (Cl2) влечет за собой определенные экологические проблемы, требующие обсуждения.

Существуют более безопасные дезинфицирующие средства, например озон (O3). Он чрезвычайно губителен для микроорганизмов и, воздействуя на них, распадается на газообразный кислород, что улучшает качество воды. Однако озон не только токсичен, но и взрывоопасен.

Предлагается также воздействовать на воду ультрафиолетовым или другим излучением, убивающим микроорганизмы, но не оказывающим никакого побочного явления.

Заключение.

       Круговорот воды, этот долгий путь ее движения, состоит  из нескольких стадий: испарения, образования облаков, выпадения дождя, стока в ручьи и реки и снова испарения. На всем своем пути вода сама способна очищаться от попадающих в нее загрязнений.

Теоретически водные ресурсы неисчерпаемы, так как при рациональном использовании они непрерывно возобновляются в процессе круговорота воды в природе.

Еще в недалеком прошлом считалось, что воды на Земле так много, что, за исключением отдельных засушливых районов, людям не надо беспокоиться о том, что ее может не хватить.

Однако потребление воды растет такими темпами, что человечество все чаще сталкивается с проблемой, как обеспечить будущие потребности в ней. Во многих странах и регионах мира уже сегодня ощущается недостаток водных ресурсов, усиливающийся с каждым годом.

   Проблема загрязнения вод суши (рек, озер, водохранилищ, подземных вод) тесно связана с проблемой обеспеченности пресной водой, поэтому наблюдениям и контролю за уровнем загрязнения водных объектов уделяется особое внимание.

Экономическое регулирование рационального использования и охраны вод включает: планирование и финансирование мероприятий по рациональному использованию и охране вод; установление лимитов водопользования; установление нормативов платы за водопользование и водопотребление; установление нормативов платы за сбросы загрязняющих веществ в водные объекты; предоставление налоговых, кредитных и других льгот при использовании малоотходных и безотходных технологий, проведении других мероприятий, когда они дают значительный эффект в области рационального использования и охраны вод; покрытие ущерба, нанесенного водным объектам и здоровью людей по причине нарушения требований водного законодательства.

Литература

  1. Ю.В.Новиков, Экология, окружающая среда и человек. 2000г. с.320
  2. А.Н.Павлов, В.М.Кириллов, Безопасность жизнедеятельности и перспективы экологического развития, 2002 г. с.352
  3.  Экология. В.И.Коробкин, Л.В.передельский, 2003г. с.576
  4. Инженерная экология и экологический менеджмент /под ред. Н.И.Иванова и И.М.Фадина, Москва 2001. с.528

Источник: http://znakka4estva.ru/dokumenty/ekologiya-ohrana-prirody/zagryaznenie-vodnogo-basseyna-i-kontrol-za-sostoyaniem-gidrosfery/

Book for ucheba
Добавить комментарий