Космология.

Содержание
  1. КОСМОЛОГИЯ
  2. Космологические данные
  3. Космологические модели
  4. Горячий Большой взрыв
  5. Нерешенные проблемы космологии Большого взрыва
  6. Происхождение крупномасштабной структуры
  7. Открыта или замкнута Вселенная?
  8. Альтернативные космологические модели
  9. Что такое Космология
  10. Красное смещение
  11. Закон Хаббла
  12. Сингулярность
  13. Космологическая сингулярность
  14. Гравитационная сингулярность
  15. Голая сингулярность
  16. Теория Большого взрыва
  17. Теория относительности
  18. Специальная теория относительности
  19. Общая теория относительности
  20. Уравнение Александра Фридмана
  21. Космология: открытия и загадки
  22. Лишний вес Вселенной
  23. Фон фотонов
  24. Всемирное антитяготение
  25. Космология
  26. Космология — раздел естествознания, предметной областью которого является изучение свойств и эволюции Вселенной в целом
  27. Возникновение современной космологии
  28. По современным научным представлениям, наблюдаемая нами сейчас Вселенная возникла ~13,8 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается
  29. Принятая в настоящее время периодизация
  30. Хронология достижений современной космологии
  31. История становления космологии
  32. Развитие космологии в последние десятилетия
  33. Основные тезисы космологии
  34. Основы теории Большого взрыва
  35. Что изучает космология
  36. Проблемные места теории Большого взрыва
  37. Отличия астрономии от космологии
  38. Современная космология
  39. Возникновение современной космологии
  40. Развитиесовременной космологии как науки
  41. Основные концептуальные взгляды космологии

КОСМОЛОГИЯ

Космология.
статьи

КОСМОЛОГИЯ – раздел астрономии и астрофизики, изучающий происхождение, крупномасштабную структуру и эволюцию Вселенной. Данные для космологии в основном получают из астрономических наблюдений. Для их интерпретации в настоящее время используется общая теория относительности А.Эйнштейна (1915).

Создание этой теории и проведение соответствующих наблюдений позволило в начале 1920-х годов поставить космологию в ряд точных наук, тогда как до этого она скорее была областью философии.

Сейчас сложились две космологические школы: эмпирики ограничиваются интерпретацией наблюдательных данных, не экстраполируя свои модели в неизученные области; теоретики пытаются объяснить наблюдаемую Вселенную, используя некоторые гипотезы, отобранные по принципу простоты и элегантности.

Широкой известностью пользуется сейчас космологическая модель Большого взрыва, согласно которой расширение Вселенной началось некоторое время тому назад из очень плотного и горячего состояния; обсуждается и стационарная модель Вселенной, в которой она существует вечно и не имеет ни начала, ни конца.

Космологические данные

Под космологическими данными понимают результаты экспериментов и наблюдений, имеющие отношение к Вселенной в целом в широком диапазоне пространства и времени. Любая мыслимая космологическая модель должна удовлетворять этим данным. Можно выделить 6 основных наблюдательных фактов, которые должна объяснить космология:

1. В больших масштабах Вселенная однородна и изотропна, т.е. галактики и их скопления распределены в пространстве равномерно (однородно), а их движение хаотично и не имеет явно выделенного направления (изотропно).

Принцип Коперника, «сдвинувшего Землю из центра мира», был обобщен астрономами на Солнечную систему и нашу Галактику, которые также оказались вполне рядовыми.

Поэтому, исключая мелкие неоднородности в распределении галактик и их скоплений, астрономы считают Вселенную такой же однородной везде, как и вблизи нас.

2. Вселенная расширяется. Галактики удаляются друг от друга. Это обнаружил американский астроном Э.Хаббл в 1929. Закон Хаббла гласит: чем дальше галактика, тем быстрее она удаляется от нас.

Но это не означает, что мы находимся в центре Вселенной: в любой другой галактике наблюдатели видят то же самое.

С помощью новых телескопов астрономы углубились во Вселенную значительно дальше, чем Хаббл, но его закон остался верен.

3. Пространство вокруг Земли заполнено фоновым микроволновым радиоизлучением. Открытое в 1965, оно стало, наряду с галактиками, главным объектом космологии. Его важным свойством является высокая изотропность (независимость от направления), указывающая на его связь с далекими областями Вселенной и подтверждающая их высокую однородность.

Если бы это было излучение нашей Галактики, то оно отражало бы ее структуру. Но эксперименты на баллонах и спутниках доказали, что это излучение в высшей степени однородно и имеет спектр излучения абсолютно черного тела с температурой около 3 К.

Очевидно, это реликтовое излучение молодой и горячей Вселенной, сильно остывшее в результате ее расширения.

4. Возраст Земли, метеоритов и самых старых звезд немногим меньше возраста Вселенной, вычисленного по скорости ее расширения. В соответствии с законом Хаббла Вселенная всюду расширяется с одинаковой скоростью, которую называют постоянной Хаббла Н.

По ней можно оценить возраст Вселенной как 1/Н. Современные измерения Н приводят к возрасту Вселенной ок. 20 млрд. лет. Исследования продуктов радиоактивного распада в метеоритах дают возраст ок. 10 млрд. лет, а самые старые звезды имеют возраст ок. 15 млрд. лет.

До 1950 расстояния до галактик недооценивались, что приводило к завышенному значению Н и малому возрасту Вселенной, меньшему возраста Земли. Чтобы разрешить это противоречие, Г.Бонди, Т.Голд и Ф.

Хойл в 1948 предложили стационарную космологическую модель, в которой возраст Вселенной бесконечен, а по мере ее расширения рождается новое вещество.

5. Во всей наблюдаемой Вселенной, от близких звезд до самых далеких галактик, на каждые 10 атомов водорода приходится 1 атом гелия. Кажется невероятным, чтобы всюду местные условия были столь одинаковы. Сильная сторона модели Большого взрыва как раз в том, что она предсказывает везде одинаковое соотношение между гелием и водородом.

6. В областях Вселенной, удаленных от нас в пространстве и во времени, больше активных галактик и квазаров, чем рядом с нами. Это указывает на эволюцию Вселенной и противоречит теории стационарной Вселенной.

Космологические модели

Любая космологическая модель Вселенной опирается на определенную теорию гравитации. Таких теорий много, но лишь некоторые из них удовлетворяют наблюдаемым явлениям. Теория тяготения Ньютона не удовлетворяет им даже в пределах Солнечной системы.

Лучше всех согласуется с наблюдениями общая теория относительности Эйнштейна, на основе которой русский метеоролог А.Фридман в 1922 и бельгийский аббат и математик Ж.Леметр в 1927 математически описали расширение Вселенной.

Из космологического принципа, постулирующего пространственную однородность и изотропность мира, они получили модель Большого взрыва. Их вывод подтвердился, когда Хаббл обнаружил связь между расстоянием и скоростью разбегания галактик. Второе важное предсказание этой модели, сделанное Г.

Гамовым, касалось реликтового излучения, наблюдаемого сейчас как остаток эпохи Большого взрыва. Другие космологические модели не могут так же естественно объяснить это изотропное фоновое излучение.

Горячий Большой взрыв

Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – ок. 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечные плотность и температуру; такое состояние называют сингулярностью.

Согласно общей теории относительности, гравитация не является реальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной сингулярности искривление тоже было бесконечным.

Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной. По мере увеличения объема пространства расширяющейся Вселенной плотность материи в ней падает. С.Хокинг и Р.

Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной.

Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывного рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.

Чем более ранние события мы рассматриваем, тем меньше был их пространственный масштаб; по мере приближения к началу расширения горизонт наблюдателя сжимается (рис. 1).

В самые первые мгновения масштаб так мал, что мы уже не в праве применять общую теорию относительности: для описания явлений в столь малых масштабах требуется квантовая механика.

Но квантовой теории гравитации пока не существует, поэтому никто не знает, как развивались события до момента 10–43 с, называемого планковским временем (в честь отца квантовой теории).

В тот момент плотность материи достигала невероятного значения 1090 кг/см3, которое нельзя сравнить не только с плотностью окружающих нас тел (менее 10 г/см3), но даже с плотностью атомного ядра (ок. 1012 кг/см3) – наибольшей плотностью, доступной в лаборатории. Поэтому для современной физики началом расширения Вселенной служит планковское время.

Вот при таких условиях немыслимо высокой температуры и плотности состоялось рождение Вселенной. Причем это могло быть рождением в прямом смысле: некоторые космологи (скажем, Я.Б.Зельдович в СССР и Л.

Паркер в США) считали, что частицы и гамма-фотоны были рождены в ту эпоху гравитационным полем. С точки зрения физики, этот процесс мог состояться, если сингулярность была анизотропной, т.е. гравитационное поле было неоднородным.

В этом случае приливные гравитационные силы могли «вытащить» из вакуума реальные частицы, создав таким образом вещество Вселенной.

Изучая процессы, происходившие сразу после Большого взрыва, мы понимаем, что наши физические теории еще весьма несовершенны. Тепловая эволюция ранней Вселенной зависит от рождения массивных элементарных частиц – адронов, о которых ядерная физика знает еще мало. Многие из этих частиц нестабильны и короткоживущи.

Швейцарский физик Р.Хагедорн считает, что может существовать великое множество адронов возрастающих масс, которые в изобилии могли формироваться при температуре порядка 1012 К, когда гигантская плотность излучения приводила к рождению адронных пар, состоящих из частицы и античастицы.

Этот процесс должен был бы ограничить рост температуры в прошлом.

Согласно другой точке зрения, количество типов массивных элементарных частиц ограничено, поэтому температура и плотность в период адронной эры должны были достигать бесконечных значений.

В принципе это можно было бы проверить: если бы составляющие адронов – кварки – были стабильными частицами, то некоторое количество кварков и антикварков должно было сохраниться от той горячей эпохи.

Но поиск кварков оказался тщетным; скорее всего, они нестабильны.

После первой миллисекунды расширения Вселенной сильное (ядерное) взаимодействие перестало играть в ней определяющую роль: температура снизилась настолько, что атомные ядра перестали разрушаться. Дальнейшие физические процессы определялись слабым взаимодействием, ответственным за рождение легких частиц – лептонов (т.е.

электронов, позитронов, мезонов и нейтрино) под действием теплового излучения. Когда в ходе расширения температура излучения понизилась примерно до 1010 К, лептонные пары перестали рождаться, почти все позитроны и электроны аннигилировали; остались лишь нейтрино и антинейтрино, фотоны и немного сохранившихся с предшествующей эпохи протонов и нейтронов.

Так завершилась лептонная эра.

Следующая фаза расширения – фотонная эра – характеризуется абсолютным преобладанием теплового излучения. На каждый сохранившийся протон или электрон приходится по миллиарду фотонов.

Вначале это были гамма-кванты, но по мере расширения Вселенной они теряли энергию и становились рентгеновскими, ультрафиолетовыми, оптическими, инфракрасными и, наконец, сейчас стали радиоквантами, которые мы принимаем как чернотельное фоновое (реликтовое) радиоизлучение.

Нерешенные проблемы космологии Большого взрыва

Можно отметить 4 проблемы, стоящие сейчас перед космологической моделью Большого взрыва.

1. Проблема сингулярности: многие сомневаются в применимости общей теории относительности, дающей сингулярность в прошлом. Предлагаются альтернативные космологические теории, свободные от сингулярности.

2. Тесно связана с сингулярностью проблема изотропности Вселенной. Кажется странным, что начавшееся с сингулярного состояния расширение оказалось столь изотропным. Не исключено, правда, что анизотропное вначале расширение постепенно стало изотропным под действием диссипативных сил.

3. Однородная на самых больших масштабах, на меньших масштабах Вселенная весьма неоднородна (галактики, скопления галактик). Трудно понять, как одна лишь гравитация могла привести к появлению такой структуры. Поэтому космологи изучают возможности неоднородных моделей Большого взрыва.

4. Наконец, можно спросить, каково будущее Вселенной? Для ответа необходимо знать среднюю плотность материи во Вселенной. Если она превосходит некоторое критическое значение, то геометрия пространства-времени замкнутая, и в будущем Вселенная непременно сожмется.

Замкнутая Вселенная не имеет границ, но ее объем конечен. Если плотность ниже критической, то Вселенная открыта и будет расширяться вечно. Открытая Вселенная бесконечна и имеет только одну сингулярность вначале.

Пока наблюдения лучше согласуются с моделью открытой Вселенной.

Происхождение крупномасштабной структуры

У космологов на эту проблему есть две противоположные точки зрения.

Самая радикальная состоит в том, что вначале был хаос. Расширение ранней Вселенной происходило крайне анизотропно и неоднородно, но затем диссипативные процессы сгладили анизотропию и приблизили расширение к модели Фридмана – Леметра.

Судьба неоднородностей весьма любопытна: если их амплитуда была большой, то неизбежно они должны были коллапсировать в черные дыры с массой, определяемой текущим горизонтом. Их формирование могло начаться прямо с планковского времени, так что во Вселенной могло быть множество мелких черных дыр с массами до 10–5 г. Однако С.

Хокинг показал, что «мини-дыры» должны, излучая, терять свою массу, и до нашей эпохи могли сохраниться только черные дыры с массами более 1016 г, что соответствует массе небольшой горы.

Первичный хаос мог содержать возмущения любого масштаба и амплитуды; наиболее крупные из них в виде звуковых волн могли сохраниться от эпохи ранней Вселенной до эры излучения, когда вещество было еще достаточно горячим, чтобы испускать, поглощать и рассеивать излучение.

Но с окончанием этой эры остывшая плазма рекомбинировала и перестала взаимодействовать с излучением. Давление и скорость звука в газе упали, вследствие чего звуковые волны превратились в ударные волны, сжимающие газ и заставляющие его коллапсировать в галактики и их скопления.

В зависимости от типа исходных волн расчеты предсказывают весьма различную картину, далеко не всегда соответствующую наблюдаемой.

Для выбора между возможными вариантами космологических моделей важной является одна философская идея, известная как антропный принцип: с самого начала Вселенная должна была иметь такие свойства, которые позволили сформироваться в ней галактикам, звездам, планетам и разумной жизни на них. Иначе некому было бы заниматься космологией.

Альтернативная точка зрения состоит в том, что об исходной структуре Вселенной можно узнать не более того, что дают наблюдения. Согласно этому консервативному подходу, нельзя считать юную Вселенную хаотической, поскольку сейчас она весьма изотропна и однородна.

Те отклонения от однородности, которые мы наблюдаем в виде галактик, могли вырасти под действием гравитации из небольших начальных неоднородностей плотности. Однако исследования крупномасштабного распределения галактик (в основном проведенные Дж.Пиблсом в Принстоне), кажется, не подтверждают эту идею.

Другая интересная возможность состоит в том, что скопления черных дыр, родившихся в адронную эру, могли стать исходными флуктуациями для формирования галактик.

Открыта или замкнута Вселенная?

Ближайшие галактики удаляются от нас со скоростью, пропорциональной расстоянию; но более далекие не подчиняются этой зависимости: их движение указывает, что расширение Вселенной со временем замедляется.

В замкнутой модели Вселенной под действием тяготения расширение в определенный момент останавливается и сменяется сжатием (рис.

2), но наблюдения показывают, что замедление галактик происходит все же не так быстро, чтобы когда-либо произошла полная остановка.

Чтобы Вселенная была замкнута, средняя плотность материи в ней должна превышать определенное критическое значение. Оценка плотности видимого и невидимого вещества весьма близка к этому значению.

Распределение галактик в пространстве весьма неоднородно.

Наша Местная группа галактик, включающая Млечный Путь, Туманность Андромеды и несколько галактик поменьше, лежит на периферии огромной системы галактик, известной как Сверхскопление в Деве (Virgo), центр которого совпадает со скоплением галактик Virgo.

Если средняя плотность мира велика и Вселенная замкнута, то должно было бы наблюдаться сильное отклонение от изотропного расширения, вызванное притяжением нашей и соседних галактик к центру Сверхскопления. В открытой Вселенной это отклонение незначительно. Наблюдения скорее согласуются с открытой моделью.

Большой интерес космологов вызывает содержание в космическом веществе тяжелого изотопа водорода – дейтерия, который образовался в ходе ядерных реакций в первые мгновения после Большого взрыва. дейтерия оказалось чрезвычайно чувствительно к плотности вещества в ту эпоху, а следовательно, и в нашу.

Однако «дейтериевый тест» осуществить нелегко, ибо нужно исследовать первичное вещество, не побывавшее с момента космологического синтеза в недрах звезд, где дейтерий легко сгорает.

Изучение предельно далеких галактик показало, что содержание дейтерия соответствует низкой плотности материи и, следовательно, открытой модели Вселенной.

Альтернативные космологические модели

Вообще говоря, в самом начале своего существования Вселенная могла быть весьма хаотична и неоднородна; следы этого мы, возможно, наблюдаем сегодня в крупномасштабном распределении вещества. Однако период хаоса не мог длиться долго. Высокая однородность космического фонового излучения свидетельствует, что Вселенная была очень однородна в возрасте 1 млн. лет.

А расчеты космологического ядерного синтеза указывают, что если бы по истечении 1 с после начала расширения существовали большие отклонения от стандартной модели, то состав Вселенной был бы совсем иным, чем в действительности. Однако о том, что было в течение первой секунды, еще можно спорить.

Кроме стандартной модели Большого взрыва, в принципе существуют и альтернативные космологические модели:

1. Модель, симметричная относительно материи и антиматерии, предполагает равное присутствие этих двух видов вещества во Вселенной.

Хотя очевидно, что наша Галактика практически не содержит антивещества, соседние звездные системы вполне могли бы целиком состоять из него; при этом их излучение было бы точно таким же, как у нормальных галактик.

Однако в более ранние эпохи расширения, когда вещество и антивещество были в более тесном контакте, их аннигиляция должна была рождать мощное гамма-излучение. Наблюдения его не обнаруживают, что делает симметричную модель маловероятной.

2. В модели Холодного Большого взрыва предполагается, что расширение началось при температуре абсолютного нуля.

Правда, и в этом случае ядерный синтез должен происходить и разогревать вещество, но микроволновое фоновое излучение уже нельзя прямо связывать с Большим взрывом, а нужно объяснять как-то иначе.

Эта теория привлекательна тем, что вещество в ней подвержено фрагментации, а это необходимо для объяснения крупномасштабной неоднородности Вселенной.

3. Стационарная космологическая модель предполагает непрерывное рождение вещества. Основное положение этой теории, известное как Идеальный космологический принцип, утверждает, что Вселенная всегда была и останется такой, как сейчас. Наблюдения опровергают это.

4. Рассматриваются измененные варианты эйнштейновской теории гравитации. Например, теория К.Бранса и Р.Дикке из Принстона в общем согласуется с наблюдениями в пределах Солнечной системы.

Модель Бранса – Дикке, а также более радикальная модель Ф.

Хойла, в которой некоторые фундаментальные постоянные изменяются со временем, имеют почти такие же космологические параметры в нашу эпоху, как и модель Большого взрыва.

5. На основе модифицированной эйнштейновской теории Ж.

Леметр в 1925 построил космологическую модель, объединяющую Большой взрыв с длительной фазой спокойного состояния, в течение которой могли формироваться галактики.

Эйнштейн заинтересовался этой возможностью, чтобы обосновать свою любимую космологическую модель статической Вселенной, но когда было открыто расширение Вселенной, он публично отказался от нее.

Источник: https://www.krugosvet.ru/enc/astronomiya/kosmologiya

Что такое Космология

Космология.

Космология — это наука, которая отвечает на вопросы, как образовалась Вселенная, из чего она состоит, каким образом развивается и каково её будущее.

Космология изучает теории и научным путём пытается доказать их правильность. Основной теорией возникновения Вселенной является теория Большого взрыва.

Космология также является подразделом двух других наук — астрономии и астрофизики.

Космолог — это учёный, который изучает космологию.

Возникновение космологии как науки связывают с появлением теории относительности, которая была разработана Альбертом Энштейном (опубликована в 1915 году). Позже в 1922 году идеи Энштейна о неизменяющейся Вселенной были опровергнуты физиком и математиком Александром Фридманом.

Говоря о появлении космологии как науки, невозможно не упомянуть открытие американского учёного-астронома Веста Мелвина Слайфера в 1912–1914 годах. Он обнаружил красное смещение.

Красное смещение

Весто Слайфер открыл, что на фотографических изображениях спектра (спектрограммах) галактик, особенно тех, которые расположены далеко от нашей галактики, много красного цвета. Такое смещение в сторону красного цвета было названо красным смещением.

Красное смещение означает, что галактики двигаются: вращаются и удаляются. Это, в свою очередь, говорит о том, что Вселенная расширяется.

Галактики Вселенной, выявленные телескопами астрономической обсерватории в Чили

Закон Хаббла

Эдвин Хаббл — американский космолог (1889–1953)

В 1929 году Эдвин Хаббл обнаружил, что есть связь между скоростью, с которой далёкие галактики движутся в противоположную от нашей галактики сторону, и расстоянием до этих галактик.

Он вывел формулу, которая позволяет рассчитать скорость галактики и расстояние до Земли. Это открытие было названо законом Хаббла (также закон красного смещения).

Несмотря на то, что этот закон действует только для далёких галактик, он позволил подтвердить, что Вселенная расширяется. С помощью закона Хаббла можно вычислить момент, когда Вселенная начала расширяться. Это позволило учёным выяснить возраст Вселенной — 13,8 миллиардов лет.

Учёные пришли к выводу, что до образования Вселенной была сингулярность.

Сингулярность

Это то положение, которое существовало до того, как произошёл Большой взрыв и образовалась Вселенная.

Согласно общей теории относительности в центре чёрной дыры находится сингулярность. Это область, где нет времени и не применимы законы физики. Область, где всё сжимается до крошечных размеров под высоким давлением.

В космологии есть три понятия: космологическая сингулярность, гравитационная сингулярность и голая сингулярность.

Космологическая сингулярность

Это состояние Вселенной как до Большого взрыва — когда Вселенная представляла собой пространство, сжатое до крошечных размеров высоким давлением, с очень большой плотностью — так и сам Большой взрыв.

Гравитационная сингулярность

Это место в пространственно-временном континууме, через которое нельзя провести кривую (геодезическую линию) и в котором не работают законы теории относительности.

В физике, в частности по общей теории относительности, тела, обладающие малым зарядом и массой, движутся по геодезической линии пространственно-временного континуума.

Но в гравитационной сингулярности законы физики не применяются. Поэтому и линии провести невозможно.

Голая сингулярность

Это некая область в пространственно-временном континууме, в которой не действует один из общих принципов в физике — принцип причинности.

Этот принцип формулирует, как происшествия или действия воздействуют друг на друга. То есть согласно нему будущие действия не могут изменять происшествия в прошлом.

Иными словами, наше будущее не воздействует на наше прошлое и не обуславливает его.

По версиям физиков, попав в голую сингулярность, можно увидеть и прошлое, и будущее. Но чтобы туда попасть, нужно попасть в чёрную дыру, что делает опыты по изучению такой сингулярности довольно затруднительными, так как из чёрной дыры нельзя выбраться.

Теория Большого взрыва

Теория возникновения Вселенной, согласно которой вначале была сингулярность, затем произошёл взрыв.

После взрыва Вселенная охлаждалась. Потом образовались атомы. Материи стали притягиваться друг к другу, образуя газовые скопления, из которых затем появились звёзды, свехновые звёзды, чёрные дыры и галактики.

Сверхновая в спиральной галактике M74

Теория относительности

Альберт Энштейн — учёный, физик-теоретик (1879–1955)

Альберт Энштейн формулирует в 1905 году специальную теорию относительности и общую теорию относительности в 1915–1916 годах.

Специальная теория относительности

Если два объекта движутся прямолинейно и с постоянной скоростью, то ни один из них не может быть системой отсчёта. Важно определять их движение только относительно друг друга.

Общая теория относительности

Энштейн пытался объяснить, откуда берётся гравитация. Согласно его теории крупные тела искажают пространственно-временной континуум. Это приводит к возникновению гравитации.

Уравнение Александра Фридмана

Александр Фридман вывел уравнение, которое доказывает, что Вселенная изменяется. Математическим путём учёный доказал, что Вселенная увеличивается и что она точно с чего-то началась.

Позднее его теории были подтверждены с помощью закона Хаббла.

Источник: https://www.uznaychtotakoe.ru/kosmologiya/

Космология: открытия и загадки

Космология.
: 25 Мар 2009 , Темные игры вселенной , том 25, №1

Космология – особая наука. Ее предмет – вся Вселенная, рассматриваемая как единое целое, как физическая система с особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел и физических полей.

Размеры наблюдаемой Вселенной приблизительно 10 миллиардов световых лет. Это самый большой по пространственному масштабу объект науки. К тому же он существует в единственном экземпляре. В этом отношении космология, очевидно, сильно отличается от других естественнонаучных дисциплин.

Но, как и в любой науке, главное в космологии – надежно установленные факты, достоверные сведения о реальных объектах, процессах и явлениях.

В статье известных российских астрофизиков рассказывается о четырех крупнейших открытиях в космологии и трудных загадках этой науки – как старых, так и совсем свежих, которые еще предстоит разрешить

Современная космология берет начало в первые десятилетия ХХ века. В 1915—1917 гг.

американский астроном Весто Слайфер обнаружил, что галактики (которые тогда называли туманностями) не стоят на месте, а движутся в пространстве, причем большинство из них удаляются от нас.

Этот вывод следовал из наблюдений спектров галактик: их движение проявляло себя в сдвиге спектральных линий к красному концу спектра.

Такого рода красное смещение, которое можно интерпретировать как давно известный в физике эффект Доплера, имеет, как впослед­ствии оказалось, всеобщий характер: оно наблюдается у всех галактик во Вселенной.

Исключение составляют только самые близкие к нам звездные системы, например, знаменитая туманность Андромеды и другие (менее крупные) галактики, находящиеся на расстояниях, не превышающих примерно 1 мегапарсек (1 Мпк ≈ 3,26 млн световых лет).

Если расстояния больше 1 Мпк, то галактики, по выражению Слайфера, «разбегаются в пространстве».

В 1929 г. другой американский исследователь, Эдвин Хаббл, которого нередко называют величайшим астрономом ХХ в., определил, что движение разбегающихся галактик следует простому закону: скорость V удаления от нас галактики пропорциональна расстоянию R до нее: V = H R.

Это соотношение между скоростью и расстоянием называют сейчас законом Хаббла, а коэффициент пропорциональности H – постоянной Хаббла. Величина H постоянна в том смысле, что она одинакова для всех галактик и не зависит ни от расстояния до галактики, ни от направления на нее на небе.

По современным данным, значение постоянной Хаббла лежит в пределах от 60 до 75 км/с на мегапарсек.

Эдвин Хаббл (1889—1953), Астроном Обсерватории Маунт-Вилсон в Калифорнии, Наблюдал галактики с помощью самого мощного в его время Телескопа Диаметром 2,5 м. В 1929 г. он установил количественную закономерность в Явлении Разбегания Галактик (Закон Хаббла)

Удаление галактик по закону Хаббла наблюдают сейчас вплоть до расстояний в несколько тысяч мегапарсек. Если галактика находится на расстоянии, скажем, 1000 Мпк, то она движется от нас прочь со скоростью 60—75 тыс. км/с. Это огромная скорость, которая лишь в 4—5 раз уступает скорости света. Всеобщее разбегание галактик — самый грандиозный феномен природы.

Открытия Слайфера и Хаббла, а также дальнейшие исследования заложили наблюдательную основу, на которой строится и развивается вся современная космология.

Мы знаем теперь, что живем в огромном мире, который к тому же расширяется со временем. Расширение началось около 14 млрд лет назад; этот гигантский промежуток времени и считается возрастом мира.

А событие, которое породило космологическое расширение, называют Большим Взрывом.

Но какова физическая природа Большого Взрыва? Откуда взялись у галактик огромные скорости разбегания? Что заставило их стремительно удаляться друг от друга? На эти вопросы не смогли ответить ни знаменитые астрономы-наблюдатели, основатели космологии, ни великие физики, начиная с Эйнштейна. Нет ответа на них и у космологов наших дней.

Возможно, это самая трудная и самая не поддающаяся разрешению загадка из когда-либо возникавших в естественных науках. Мы не знаем, с чего, собственно, началось космологическое расширение, не имеем представления о физике, которая могла бы за этим стоять. Не известно даже, как нужно ставить задачу о причине космологического расширения.

Тем более ничего нельзя сказать о том, что было до этого события, и даже не вполне понятно, что значит здесь «до».

И тем не менее сама возможность расширения мира была предсказана русским математиком Александром Фридманом, классиком мировой науки. Пользуясь теорией Эйнштейна, Фридман разработал в 1922—1924 гг. физико-математическую модель мира, который находится в состоянии общего расширения.

Прямым следствием этой модели является закон пропорциональности скорости и расстояния, который и был открыт в наблюдениях Хаббла. Космологическая модель Фридмана – теоретическая база современной космологии. Эта модель в сочетании с данными астрономических наблюдений очень хорошо описывает динамику космологического расширения.

Конечно, не с «самого начала», о котором ничего не известно. Но замечательно, что теория Фридмана справедлива сразу же после первой секунды космологического расширения.

Кроме этой первой секунды, вся дальнейшая история мира нам известна; более того, эта теория говорит и о будущем Вселенной: она предсказывает, что космологическое расширение будет продолжаться неограниченно долго.

Лишний вес Вселенной

В 1933 г. швейцарско-американский астроном Фриц Цвикки заметил, что кроме светящегося вещества галактик во Вселенной должны быть еще невидимые, «скрытые» массы, которые проявляют себя только своим тяготением. Он изучал скопление галактик Кома в созвездии Волосы Вероники – крупное образование, содержащее тысячи звездных систем, подобных туманности Андромеды или нашей Галактике.

Галактики движутся в этом скоплении со скоростями, достигающими 1000 км/с. Чтобы удержать их в объеме скопления, требуется тяготение, которое не способны создать одни только видимые, светящиеся массы самих галактик.

Для этого необходимо более сильное тяготение, и, согласно подсчетам Цвикки, требуются дополнительные массы, которые примерно в 10 раз больше суммарной видимой массы галактик скопления.

Позднее, в 1970-х гг., усилиями астрономов СССР и США было обнаружено, что скрытые массы должны присутствовать не только в скоплениях галактик, но и в изолированных крупных галактиках.

Яан Эйнасто, Вера Рубин, Джеремайя Острайкер, Джим Пиблс и их коллеги выяснили, что скрытые массы образуют невидимые гало галактик.

Дело в том, что можно измерить зависимость скорости вращения спиральных галактик от расстояния до центра (кривая вращения), которое прослеживается как внутри звездной системы, так и вне ее (по движению облаков нейтрального водорода).

В области вне видимого диска галактики кривая вращения становится, как правило, плоской, т. е. практически не зависит от расстояния. Во всех случаях ход этой «плоской» зависимости указывает на присутствие скрытой материи и внутри звездной системы, и вне ее, причем масса невидимой материи в гало в 3—10 раз больше массы галактики.

https://www.youtube.com/watch?v=pwgHh9uruqU

Эти гало имеют почти сферическую форму, их радиусы в 5—10 раз превышают размеры самих звездных систем.

Такие крупные галактики, как, скажем, туманность Андромеды или наша Галактика, состоят из звездного диска, погруженного в распределение невидимой массы, которое простирается на расстояния до 100 кпк.

Эти темные гало, как и дополнительные массы у Цвикки, проявляют себя исключительно тяготением. Невидимое вещество, наполняющее гало галактик и скоплений, принято сейчас называть темной материей.

Другие интересные эмпирические данные, подтверждающие существование темной материи, связаны с эффектом гравитационной линзы. Скопления галактик создают эйнштейновский эффект отклонения света полем тяготения. Источником света служат в этом случае далекие галактики и квазары.

Изображения галактик искажаются при прохождении их света в гравитационном поле скопления, служащего своеобразной гравитационной линзой. Различают сильное и слабое линзирование. При сильном линзировании искажение столь значительно, что появляется несколько изображений источника. Это происходит, когда угловое расстояние между линзой и источником относительно невелико.

При сравнительно больших угловых расстояниях искажение не так значительно (слабое линзирование), и оно сводится к изменению видимой формы источника, но уже без дробления его изображения. В обоих случаях этот эффект дает указание на массу скопления, служащего гравитационной линзой.

Изучая такие искажения для сотен тысяч и миллионов далеких галактик, можно получить сведения о величине и распределении массы в скоплениях-линзах. Наблюдения такого рода неизменно указывают на то, что скопления содержат большие скрытые массы.

Открытие темной материи – второе (после открытия космологического расширения) важнейшее событие в истории космологии.

Обычное вещество, из которого состоит планета Земля (и все, что на ней, включая и нас самих), Солнце, другие звезды, складывается всего из трех видов элементарных частиц: протонов, нейтронов и электронов.

А темная материя, которой во Вселенной гораздо больше, имеет совсем другой состав: это не барионы (протоны и нейтроны), не электроны, а… неизвестно что.

Четверть века назад Я. Б. Зельдович активно развивал представление о том, что темная материя могла бы состоять из нейтрино. Космологические нейтрино (и антинейтрино) определенно имеются во Вселенной.

Они вышли из равновесия с веществом, когда возраст мира был меньше одной секунды, и с тех пор присутствуют в космосе, взаимодействуя с остальными видами энергии практически только гравитационно. Их должно быть в среднем около 300 в каждом кубическом сантиметре пространства.

В начале 1980-х гг. казалось, что лабораторный физический эксперимент позволяет этим частицам иметь массы, подходящие для того, чтобы нейтрино могли играть роль темной материи.

Сейчас, однако, стало ясно, что массы нейтрино значительно меньше, так что на них можно списать в лучшем случае примерно 10 % темной материи. Каковы же тогда основные носители этой субстанции?

Одна из современных гипотез, выросшая из идеи Зельдовича, заключается в том, что темная материя состоит в основном из частиц, в некотором смысле очень похожих на нейтрино: они стабильны, не имеют электрического заряда и участвуют только в гравитационном и слабом взаимодействиях.

Однако такие частицы сильно отличаются от нейтрино по массе: они должны быть очень тяжелыми, примерно в 1000 раз тяжелее протона, так что энергия покоя такой частицы составляет около 1 ТэВ. Такие частицы до сих пор не были известны ни в теории, ни в физическом эксперименте.

Если они действительно существуют, то, как показывает теория, они вполне могли бы присутствовать во Вселенной в нужном количестве.

Таким путем космология приходит к интересному предсказанию: в природе должны существовать массивные стабильные слабовзаимодействующие элементарные частицы, на долю которых приходится примерно 25 % всей массы и энергии Вселенной, что в 4—5 раз больше, чем вклад барионов.

Согласно одной из Гипотез, Темная Материя состоит из частиц, похожих на Нейтрино. однако такие частицы должны быть примерно в 1000 раз тяжелее Протона

Возможно, нужные по свойствам новые частицы будут обнаружены на Большом адронном коллайдере в ЦЕРНе, который готовится к проведению небывалых экспериментов. На этом мощнейшем ускорителе пучки протонов и ионов будут разгоняться до энергий более 10 ТэВ, что заметно превышает энергию покоя гипотетических темных частиц.

В нескольких крупных лабораториях мира, в том числе и в России, строятся специальные установки для детектирования частиц темной материи, приходящих на Землю из гало нашей Галактики. Не исключено, что вопрос о физической природе темной материи будет решен уже в недалеком будущем.

Во всяком случае эта загадка не кажется такой безнадежной, как природа космологического расширения.

Фон фотонов

В 1965 г. американские радиоастрономы Арно Пензиас и Роберт Вилсон обнаружили, что вся Вселенная пронизана электромагнитным излучением, приходящим на Землю изотропно, т. е. равномерно со всех направлений. Это третье из крупнейших открытий в космологии.

Максимум в спектре этого излучения приходится на миллиметровые волны, причем сам спектр, т. е. распределение по длинам волн (или частотам), совпадает по форме со спектром абсолютно черного тела. На языке квантов можно сказать, что в мире имеется газ фотонов, которые равномерно заполняют все пространство.

Температура этого газа точно измерена: T = 2,725 K. Как видим, это очень низкая температура, она не выше трех градусов, считая от абсолютного нуля (по шкале Цельсия это −270°). Таких космических фотонов очень много во Вселенной: их почти в 10 млрд раз больше, чем протонов, если считать по числу частиц.

В кубическом сантиметре пространства содержится примерно 500 реликтовых фотонов.

Само по себе изотропное космическое излучение не таит никаких особенных загадок. Это реликт, т. е. остаток, того состояния, в котором Вселенная находилась в очень далеком прошлом, в первые минуты своего расширения.

В те времена в ней не было ни звезд, ни галактик, а все вещество распределялось в пространстве более или менее равномерно. Это можно себе представить, если мысленно обратить ход времени: глядя назад, мы увидим, что галактики не разбегаются, а сближаются между собой.

И в определенный момент они должны перемешаться, так что их вещество окажется газом приблизительно однородной плотности. Этот газ должен быть очень горячим. Еще со школьной скамьи мы знаем, что при расширении тела охлаждаются, а при сжатии – нагреваются.

Из физики известно также, что в горячем газе должны обязательно иметься фотоны, находящиеся с газом в термодинамическом равновесии. При расширении Вселенной фотоны не исчезают и должны сохраниться до современной эпохи.

Так рассуждал еще в 1940-х гг. Георгий Гамов, некогда студент профессора Фридмана в Ленинграде. Он построил теорию «горячей Вселенной», которую называют еще теорией Большого Взрыва, и на ее основе смог предсказать само существование этого остаточного, реликтового излучения. Более того, он предсказал и нынешнюю температуру реликтовых фотонов.

По его расчетам, она не должна превышать 10 K. В одной из научно-популярных статей (в 1950 г.) Гамов написал, что температура должна быть примерно три градуса абсолютной шкалы. Как выяснилось через полтора десятка лет, предсказание оказалось очень точным.

Многие считают, что это было самое красивое количественное предсказание во всей космологической теории.

Но кое-что не до конца ясно и с реликтовым излучением. Космологам не удается понять, почему реликтовых фотонов так много (по сравнению с протонами).

Впрочем, правильнее было бы сказать, что это вопрос не о фотонах, а, скорее, о протонах: почему их именно столько, сколько известно из наблюдений? Ответа пока нет. С этой проблемой не удалось справиться даже А. Д.

Сахарову, который считал ее одной из самых принципиальных как в космологии, так и во всей фундаментальной физике.

Открытие и изучение реликтового излучения отмечено двумя Нобелевскими премиями. Первая присуждена в 1978 г. Пензиасу и Вилсону, вторая – в 2006 г. Джорджу Смуту и Джону Матеру, которые в 1992 г. доказали, что реликтовое излучение – это действительно термодинамически равновесный газ фотонов определенной температуры.

Это было сделано с помощью американского спутника COBE (Cоsmic Background Explorer). Кроме того, COBE измерил слабую — на уровне тысячных долей процента – анизотропию фонового излучения.

Последняя представляет собой «отпечаток» первоначально слабых неоднородностей вещества ранней Вселенной, которые позднее дали начало наблюдаемым крупномасштабным космическим структурам – галактикам и скоплениям галактик.

Георгий Гамов (1904—1968)за 15 лет до Открытия Пензиаса и Вилсона предвидел, что Температура Реликтового Излучения должна быть около Трех Градусов. Это было самое точное количественное предсказание в Космологии

В наши дни наблюдения реликтового излучения служат астрономам для изучения крупномасштабных свойств Вселенной. Самый яркий результат, достигнутый на этом пути в последние годы, касается геометрии трехмерного пространства, в котором происходит разбегание галактик.

Начиная с Фридмана, космологи стремились выяснить тип геометрии реального пространства. Оказалось, что это обычная школьная эвклидова геометрия. Выходит, наш мир устроен не слишком сложно: по крайней мере его пространственная геометрия – самая простая из возможных.

Всемирное антитяготение

В 1998—1999 гг. две международные группы наблюдателей, одной из которых руководили Брайан Шмидт и Адам Райсс, а другой – Сол Перлматтер, установили, что наблюдаемое космологическое расширение происходит с ускорением: скорости удаления галактик возрастают со временем.

Открытие сделано с помощью изучения далеких вспышек сверхновых звезд определенного типа (Ia), которые замечательны тем, что они могут служить «стандартными свечами», т. е. источниками с известной собственной светимостью.

Из-за исключительной яркости сверхновые можно наблюдать на очень больших, истинно космологических расстояниях, составляющих тысячи мегапарсек.

Вещество (считая и с темной материей) не способно ускорять галактики, а лишь тормозит их разлет: взаимное притяжение галактик стремится сблизить их друг с другом.

Поэтому открытый астрономами факт ускоренного расширения указывает на то, что наряду с обычным веществом, создающим тяготение, во Вселенной присутствует особая космическая масса, или энергия, которая создает не тяготение, а антитяготение – всеобщее отталкивание тел. При этом в космологическом масштабе антитяготение сильнее тяготения.

Новая энергия получила название темной энергии. Она дей­ствительно невидима: не излучает, не рассеивает и не поглощает света (и всех вообще электромагнитных волн); она проявляет себя только антитяготением.

Астрономы выяснили, что до расстояний примерно в 7 млрд световых лет космологическое ускорение положительно. Но на еще более далеких расстояниях ускорение, как оказалось, меняет знак: там оно отрицательно, а значит, на этих сверхбольших расстояниях космологическое расширение происходит с замедлением.

Примем теперь во внимание, что свет распространяется в пространстве с конечной скоростью. Это означает, что мы видим объекты такими, какими они были, когда испустили принимаемый нами сейчас свет.

Солнце мы видим с задержкой в 8 мин, далекие галактики наблюдаем такими, какими они были миллиарды лет назад. Телескоп – это настоящая машина времени, позволяющая воочию видеть прошлое мира.

Возраст мира составляет 13,7 млрд лет – таковы самые свежие космологические данные.

Сказанное только что о космологическом ускорении означает, что первую половину своей и­стории Вселенная расширялась с замедлением, а вторую – с ускорением.

Первые 7 млрд лет расширяющаяся Вселенная практически не чувствовала присутствия в ней темной энергии: плотность вещества (темной материи и барионов) была значительно выше плотности темной энергии.

Предполагается, что плотность темной энергии не зависит от времени, это величина постоянная.

А плотность вещества убывает в ходе расширения, так что в прошлом она была выше, чем сейчас; по этой причине до определенного момента тяготение вещества было сильнее антитяготения темной энергии. Эти две силы как раз и сравнялись по величине примерно 7 млрд лет тому назад. С тех пор темная энергия доминирует, и эта эпоха антитяготения будет длиться неограниченно долго.

По совокупности различных наблюдений (включая и наблюдения реликтового излучения) к настоящему времени установлена доля каждого космического компонента в общем энергетическом балансе Вселенной. Эти компоненты сейчас называют видами космической энергии.

На долю темной энергии приходится примерно 70 % всей энергии мира; на темную материю – 25 %; на обычное вещество (протоны, нейтроны, электроны) – около 5 %; на реликтовое излучение – менее 0,1 %. Таков рецепт «энергетической смеси», заполняющей современную Вселенную. В ней, как мы видим, много «темного» – до 95 %.

Это стало самой большой неожиданностью для астрономов, космологов и физиков.

Удивительно и достойно восхищения научное предвидение Эйнштейна: еще в 1917 г. он говорил о всеобщем космическом отталкивании как о возможном физическом феномене космологического масштаба.

У Эйнштейна антитяготение описывается всего одной константой, которую называют космологической постоянной.

Весь комплекс имеющихся сейчас наблюдательных данных о темной энергии прекрасно согласуется с таким описанием.

Антитяготение создается не Галактиками или другими Компактными Объектами, а Непрерывной Космической Средой, в которую все Тела погружены, – Темной Энергией

Эйнштейн не оставил нам физической интерпретации космологической постоянной. Согласно предложению Э. Б. Глинера, высказанному еще в 1965 г.

, космологическую постоянную можно рассматривать как физическую характеристику особого рода сплошной среды, идеально равномерно заполняющей все пространство Вселенной. Плотность этой среды не только однородна, но и не зависит от времени, она одна и та же во всех системах отсчета.

Из этого представления вытекают особые макроскопические свойства темной энергии. Так, оказывается, что у нее имеется давление, причем оно отрицательно, а по абсолютной величине равно плотности энергии (напомним, что плотность энергии и давление имеют одну и ту же размерность).

Именно из-за своего отрицательного давления темная энергия создает антитяготение – это специфический эффект общей теории относительности.

Но каковы не макроскопические, а микроскопические свойства темной энергии? Из чего она состоит? В конце 1960-х гг., задолго до открытия темной энергии, Зельдович обсуждал возможную связь между космологической постоянной и квантовым вакуумом элементарных частиц и физических полей.

Этот физический вакуум не есть абсолютная пустота, он имеет свою отличную от нуля энергию. Ее носителями служат так называемые нулевые колебания квантовых полей, всегда существующие в пространстве даже в отсутствие в нем каких-либо частиц.

Если этот квантовый вакуум рассматривать макроскопически как некую среду, то ему следует приписать не только плотность энергии, но также и давление.

При этом связь между давлением и плотностью должна быть в точности такой, как и у темной энергии, описываемой эйнштейновской космологической постоянной. Так не тождественна ли темная энергия физическому вакууму?

Было бы замечательно, если бы удалось доказать, что это действительно так: объединение кажущихся разными сущностей – плодотворнейший путь развития науки. Это известно еще со времен Максвелла, объединившего электричество и магнетизм.

Но до сих пор идею Зельдовича не удается ни доказать, ни опровергнуть. Физическая природа и микроскопическая структура темной энергии стала сейчас центральной проблемой космологии и всей фундаментальной физики.

Похоже, она столь же сложна, как и вопрос о происхождении космологического расширения.

Итак, за 90 лет своего существования, считая от первых наблюдений Слайфера и теоретической работы Эйнштейна, космология превратилась из области абстрактных и почти фантастических, как казалось, занятий на далекой периферии тогдашней науки в одно из центральных направлений естествознания XXI в.

Она обладает надежным наблюдательным фундаментом, который складывается из базовых фактов о Вселенной. На нем строится и развивается теория, прочно связанная со всей современной физикой, включая общую теорию относительности, ядерную физику и физику элементарных частиц.

Космология ставит новые важные вопросы, выдвигает содержательные идеи и гипотезы, делает смелые предсказания. Она дает широкую, богатую и согласованную картину мира, которая становится сейчас неотъемлемой частью общей культуры человечества.

А нерешенные проблемы в живой, сложной науке всегда есть и должны быть – это источник и резерв ее дальнейшего развития.

Литература

Вейнберг С. Первые три минуты. М.: Атомиздат, 1982.

Новиков И. Д., Шаров А. С. Человек, открывший взрыв Вселенной. М.: Наука, 1989.

Розенталь И. Л. Элементарные частицы и структура Вселенной. М.: Недра, 1984.

Тропп Э. А., Френкель В. Я., Чернин А. Д. Александр Александрович Фридман. Труды и жизнь. М.: Наука, 1988.

Черепащук А. М., Чернин А. Д. Вселенная, жизнь, черные дыры. Фрязино: Век-2, 2003. 

Черепащук А. М., Чернин А. Д. Горизонты Вселенной. Новосибирск: Изд-во СО РАН, 2005.

: 25 Мар 2009 , Темные игры вселенной , том 25, №1

Источник: https://scfh.ru/papers/kosmologiya-otkrytiya-i-zagadki/

Космология

Космология.

Начиная с самых ранних этапов своей истории человек стремился понять, как устроен окружающий мир, что такое звезды, планеты, солнце, как они возникли. Многовековые попытки дать ответы на эти вопросы привели к возникновению космологии.

Космология — раздел естествознания, предметной областью которого является изучение свойств и эволюции Вселенной в целом

Сам термин «космология» образован от двух греческих слов: kosmos — Вселенная и logos — закон, учение.

Космология использует достижения и методы астрономии, физики, математики, философии. Естественно-научной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Возникновение современной космологии

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности».

В ней он ввёл три предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.

В 1922 году А. А. Фридман предложил нестационарное решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва (БВ).

По современным научным представлениям, наблюдаемая нами сейчас Вселенная возникла ~13,8 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается

Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около1093 г/см³ (Планковская плотность).

Ранняя Вселенная в соответствии с моделью БВ представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением.

В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Принятая в настоящее время периодизация

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, — это планковское время (10−43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10−11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10−2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система.

Важной вехой в истории развития Вселенной считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс.

лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

Итак, XX век считается веком рождения современной космологии. Она возникает в начале века и по мере развития вбирает в себя все новейшие достижения, такие как технологии постройки больших телескопов, космические полёты и компьютеры.

Хронология достижений современной космологии

Первые шаги к уже современной космологии были сделаны в 1908–1916 годы. В это время открытие прямо-пропорциональной зависимости между периодом и видимой звёздной величиной у цефеид в Малом Магеллановом облаке (Генриетта Ливитт, США) позволило Эйнару Герцшпрунгу и Харлоу Шепли разработать метод определения расстояний по цефеидам.

В 1916 г. А. Эйнштейн пишет уравнения общей теории относительности — теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр — космологическую постоянную.

В 1922–1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.

В 1929 г. Эдвин Хаббл открывает закон пропорциональности между скоростью удаления галактик и расстоянием до них, позже названный его именем. Становится очевидным, что Млечный путь — лишь небольшая часть окружающей Вселенной.

Вместе с этим появляется доказательство для гипотезы Канта: некоторые туманности — галактики, подобные нашей.

Одновременно подтверждаются выводы Фридмана о нестационарности окружающего мира, а вместе с тем и верность выбранного направления развития космологии.

С этого момента и вплоть до 1998 года классическая модель Фридмана без космологической постоянной становится доминирующей. Влияние космологической постоянной на итоговое решение изучается, но ввиду отсутствия экспериментальных указаний на её существенность для описания Вселенной такие решения для интерпретации наблюдательных данных не применяются.

В 1932 году Ф. Цвикки выдвигает идею о существовании тёмной материи — вещества, не проявляющего себя электромагнитным излучением, но участвующего в гравитационном взаимодействии. В тот момент идея была встречена скептически, и только около 1975 года она получает второе рождение и становится общепринятой.

В 1946–1949 г.г. Г. Гамов, пытаясь объяснить происхождение химических элементов, применяет законы ядерной физики к началу расширения Вселенной. Так возникает теория «горячей Вселенной» — теория Большого Взрыва, а вместе с ней и гипотеза об изотропном реликтовом излучении с температурой в несколько градусов Кельвина.

В 1964 г. А. Пензиас, Р. Вилсон открывают изотропный источник помех в радиодиапазоне. Тогда же выясняется, что это реликтовое излучение, предсказанное Гамовым. Теория горячей Вселенной получает подтверждение, а в космологию приходит физика элементарных частиц.

В 1991–1993 г.г. в космических экспериментах «Реликт-1» и COBE открыты флуктуации реликтового излучения.

В 1998 г. по далеким сверхновым типа Ia строится диаграмма Хаббла для больших z. Выясняется, что Вселенная расширяется с ускорением.

Модель Фридмана допускает подобное только при введении антигравитации, описываемой космологической постоянной. Возникает мысль о существовании особого рода энергии, ответственного за это — тёмной энергии.

Появляется современная теория расширения — ΛCDM-модель, включающая в себя как тёмную энергию, так и тёмную материю.

Интернет-энциклопедия «Википедия»
Теории строения Вселенной

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1. Эволюция космологических моделей

Источник: https://myvera.ru/kosmolog

История становления космологии

О происхождении и эволюции Вселенной люди начали задумываться ещё в глубокой древности. Первоначально люди объясняли процесс сотворения наблюдаемого мира действием сверхъестественных сил — богов.

Эпоха Возрождения и буржуазные революции привели к значительному уменьшению влияния религии на мировоззренческие взгляды людей.

Последние пять веков ученые стараются объяснить процесс эволюции Вселенной с помощью естественных законов физики, химии и т. д.

Одна из первых версий строения мира — плоская земля, которая покоится на трех китах и черепахе

Изначально в древние времена люди знали очень ограниченный список астрономических объектов: Земля, Луна, 5 планет Солнечной Системы и т.н. “неподвижные” звезды.

Наблюдаемое движение Солнца, Луны и планет по земному небу привело к ошибочному мнению, что Земля является центром Солнечной Системы и всей Вселенной. Подобная мировоззренческая система получила название геоцентрическая система мира.

Лишь более тщательные наблюдения за движением небесных тел в дальнейшем позволили выяснить, что центром Солнечной Системы является Солнце, а вокруг Земли вращается только Луна. Подобная система называется гелиоцентрической.

Насчет же звезд первоначально существовало несколько мнений: от отверстий в небесной сфере до очень далеких солнц (последний вариант в гелиоцентрической системе объяснялся отсутствием параллактического смещения по причине орбитального движения Земли вокруг Солнца).

Геоцентрическая система

Изобретение телескопа позволило радикально увеличить познавательные способности в изучении Вселенной. Даже небольшие телескопы показали, что число звезд на небе исчисляется многими миллионами. К середине 19 века телескопические наблюдения позволили впервые определить истинное (тригонометрическое) расстояние до ближайших звезд.

В дальнейшем была создана шкала измерения расстояния до ещё более далеких объектов (на основе наблюдения особого типа переменных звезд — цефеид и измерения красного смещения спектров астрономических объектов). Особенно примечательным оказался последний момент.

Как известно, доплеровское смещение спектров астрономических объектов бывает двух видов: смещение к синей или красной части спектров. Однако спектроскопия удаленных объектов (преимущественно туманностей – далеких галактик) показала, что в спектрах преобладает смещение к красной части спектров.

Этот факт стал ярким доказательством того, что наша Вселенная расширяется — расстояние между сверхскоплениями галактик постепенно увеличивается, несмотря на силы гравитационного притяжения и потери энергии по причине излучения гравитационных волн.

Развитие космологии в последние десятилетия

Основные современные направления развития космологии связаны с несколькими пунктами:

Структура Вселенной в общем

– наблюдение в ближнем инфракрасном диапазоне (спектр излучения наиболее далеких объектов в видимой части нашей Вселенной смещен к ИК-диапазону). Подобные наблюдения позволяют изучать самые первые звезды и галактики Вселенной. С другой стороны набирает популярность использование “природных” телескопов.

Речь идет о наблюдениях далеких гравитационных линз. Искривление гравитационных полей массивных скоплений галактик позволяет увеличивать фоновые изображения очень далеких и слабых объектов – первых звезд и галактик. Подобные наблюдения уже позволили наблюдать очень далекие сверхновые и даже обычные звезды.

– регистрация реликтового (реликт.) излучения в субмиллиметровом диапазоне электромагнитного спектра. Подобное излучение является остаточным следом момента, когда первичное вещество Вселенной стало прозрачным для электромагнитного излучения. Наблюдение реликтового излучения позволяет изучить Вселенную с возрастом примерно в 370 тысяч лет после момента Большого взрыва.

– в ближайшем будущем ожидается регистрация других экзотических излучений, которые позволят изучить ещё более молодую нашу Вселенную. Речь идет о нейтринном и гравитационно-волновом реликтовом излучениях.

Это связано с тем, что проникающая способность нейтрино и гравитационных волн гораздо больше, чем у электромагнитного излучения.

Первое излучение рождается во Вселенной возрастом около одной секунды, второе излучение появляется во Вселенной, возраст которой составляет всего 10 в -43 степени секунд.

– в конце 20 века было открыто важное космологическое свойство Вселенной: ускоренное расширение. Подобное явление было обнаружено через изучение сверхновых первого типа, которые являются одними из самых точных индикаторов расстояний до далеких галактик. Открытие ускоренного расширения Вселенной стало доказательством того, что наблюдаемая Вселенная примерно на 75% состоит из темной энергии.

Эволюция Вселенной после рождения

– в настоящее время набирает обороты картографирование Вселенной в наиболее крупных масштабах. Как известно, в целом, Вселенная является пенообразной структурой с ячейками, размер каждой из которых достигает несколько сотен миллионов парсек.

Каждая из ячеек представляет собой огромную пустоту, где не наблюдаются крупные галактики. В тоже время границами ячеек являются огромные сверхскопления галактик.

Картографирование Вселенной осуществляется, как с помощью спектроскопических обзоров миллионов галактик, так и другими методами (определение расстояния до гамма-всплесков с помощью измерения красного смещения их оптического послесвечения или каталогизация галактик с наиболее активными ядрами – квазаров).

В последние годы набирает популярность ещё один метод — тщательное картографирование реликтового излучения. Изучение неоднородностей распределения вещества в молодой и современной Вселенной позволяет понять нюансы эволюции Вселенной. Особое место в процессе картографирования Вселенной занимает поиск “скрытой” массы – т.н.

темной материи. Вплоть до настоящего времени остаётся загадкой, что представляет собой подобная материя. Так самые тщательные поиски на земных детекторах элементарных частиц не смогли обнаружить возможные неизвестные элементарные частицы-кандидаты в темную материю.

Неоднородности в реликтовом излучении электромагнитных волн по данным разных обзоров

– рост вычислительных мощностей суперкомпьютеров позволяет улучшать возможности моделирования рождения и эволюции Вселенной. Сравнение наблюдаемой и смоделированной картины развития Вселенной помогает в поисках проблемных мест в теоретической базе космологии.

Карты неба относительно галактической плоскости на различных длинах волн электромагнитного спектра (ЭМС)

В диапазоне ЭМС с длинами волн от половины одного миллиметра наиболее заметными объектами является свечение от спиральных рукавов нашей галактики и зодиакального света (в последнем случае, это линия, пересекающая все небо, которая лучше всего заметна на длине волны в 2.5 сантиметров). На длинах волн ЭМС в несколько миллиметров хорошо заметно фоновое излучение, которое светит на всём небе. Это и есть реликтовое излучение.

Основные тезисы космологии

Основное положение космологии — это утверждение, что наша Вселенная представляет собой расширяющийся мир диаметром в несколько десятков миллиардов световых лет, состоящий из нескольких триллионов галактик разного размера. Скорость расширения Вселенной можно описать с помощью закона Хаббла:

υ=Hr, где Н – постоянная Хаббла, υ — скорость галактики, а r – это расстояние до галактики.

Интерполяция расширения Вселенной приводит к пониманию того, что около 13.7 миллиардов лет назад Вселенная являлась точечным объектом — сгустком первичной материи и энергии. Рождение Вселенной объясняется концепцией Большого взрыва. На основе теоретических расчетов до появления первых звезд во Вселенной химический состав Вселенной на ¾ представлял собой водород, а на ¼ гелий.

Основы теории Большого взрыва

Большим взрывом называется космологическая модель, описывающая начало эволюции Вселенной, перед которым Вселенная находилась в состоянии сингулярности. Остаточным излучением Большого взрыва является реликтовое излучение (в электромагнитном или гравитационно-волновом диапазоне, а также реликтовое нейтринное излучение).

Что изучает космология

Основными объектами изучения космологии являются первые звезды и галактики, реликтовое излучение (электромагнитное, гравитационно-волновое и нейтринное) и вспышки далеких сверхновых.

Проблемные места теории Большого взрыва

Основными проблемами теории Большого взрыва являются следующие вопросы:

– Почему Вселенная начала расширяться?

– Из чего состояла Вселенная до начала расширения?

Дополнительными проблемами в космологии является прогнозирование будущего Вселенной. Существует несколько вариантов будущего Вселенной: от бесконечного расширения (теория «большого разрыва») до смены расширения на сжатие (с последующим новым Большим взрывом — теория циклической эволюции Вселенной).

Схематичная иллюстрация возможного будущего Вселенной — теории «Большого разрыва»

В настоящее время появилась ещё одна проблема: значительное несоответствие оценок постоянной Хаббла, полученной двумя разными способами (через анализ данных обзора реликтового излучения космическим аппаратом «Планк» и измерение расстояния до внегалактических цефеид).

Схематичная иллюстрация возможной циклической эволюции Вселенной

Отличия астрономии от космологии

Хотя астрономы и космологи изучают одну и ту же Вселенную, тем не менее, между их областями изучения существует главное отличие. Это отличие заключается в том, что астрономия в основном изучает конкретные небесные тела (астероиды, планеты, звезды и галактики), в то время как космология изучает Вселенную как одну неделимую систему.

Источник: https://SpaceGid.com/cosmology

Современная космология

Космология.

С самых ранних веков человечество задавалось вопросами о том, какое место оно занимает в мире, что его окружает и как это называется. Как оказалось, звёзды и планеты являются частицами Вселенной, в которой мы находимся.

Знания об этих элементах, теории о возникновении мира, физические гипотезы, математические законы, философия – все это впоследствии включилось в одну единую науку. Которую, как известно, назвали космология.

Далее мы хотели бы рассказать об основах современной космологии, ее достижениях и концептуальных взглядах.

Космология

Возникновение современной космологии

Если говорить о периоде, когда вышеназванная наука получила наибольшее развитие, то стоит сказать о 20 веке. Тогда Альберт Эйнштейн выдвинул сразу несколько теорий относительно Вселенной.

Впоследствии он доказал их на примере уравнения гравитационного поля. Обозначенные исследования были связаны с общей теорией относительности.

Которая, к тому же, на тот момент получила общественную огласку.

Альберт Эйнштейн

В своем первой работе (Космологические соображения к общей теории относительности) Эйнштейн вывел три предположения. В них он рассматривал Вселенную однородной, стационарной и изотропной.

Как мы уже сказали, для доказательства сказанного он использовал уравнения гравитационного пола. Интересно, что в него учёный ввёл дополнительную переменную. В итоге, удалось получить решение задачи. Именно оно послужило доказательством его предположений. Получается, что Вселенная имеет определенные границы и положительную кривизну.

Однако, на этом исследования не закончились. Следующим работу над уравнением продолжил Александр Александрович Фридман (1922 г). Он выдвинул другое, нестационарное решение. Согласно его мнению, Вселенная расширялась из начальной сингулярности.

Физик Александр Александрович Фридман

Впоследствии предположение Фридмана подтвердилось. В то время, когда Эдвин Хаббл открыл космологическое красное смещение.

За счет вышеназванных открытий удалось получить актуальную и в данный момент теорию Большого Взрыва. Если говорить обобщенно, фундаментом современной космологии являются именно открытия 20 века.

Несмотря на то, что начало изучения науки было положено в гораздо более ранние времена.

На самом деле современная космология установила возраст вселенной. По примерным подсчетам учёных он составляет 13,8 миллиарда лет.

Развитиесовременной космологии как науки

Прежде, чем перейти к современным достижениям в области космологии, стоит сказать о некоторых других этапах исследований. В первую очередь нужно отметить труды Николая Коперника (15 век).

В своих работах он обобщил все накопленные за прошлые периоды знания. Сюда же вошли труды Самосского, Леонардо да Винчи, Гераклита и Кузо. Основой идеи стало то, что Солнечная система была инерциальной. То есть, в центре находилось солнце.

вокруг которого двигались планеты, в том числе и Земля.

Солнечная система

Несколько позднее свой вклад в космологию внес Кеплер. В конце концов, он основал три важнейшие теории. На самом деле именно их впоследствии использовал Ньютон для законов динамики. В остальном же, другие наиболее существенные открытия произошли в 20 веке.

Как мы уже упоминали выше, первыми своими наработками поделились Эйнштейн, Фридман и Хаббл. Далее же Фриц Цвикки выдвигает идею о существовании определенного вещества. Которое не реагирует с электромагнитным излучением, но участвует в гравитационном воздействии.

Его решили назвать темной материей.

Тёмная материя

Следующими выделились Гамов (с теорией горячей Вселенной), Пензиас и Вилсон (которые открыли изотропный источник помех в радиодиапазоне).

В заключении, можно сказать что физические законы достаточно плотно связаны с космологией. Так как многие результаты и доказательства теорий были обоснованы именно с физической точки зрения.

Основные концептуальные взгляды космологии

На самом деле идей возникновения Вселенной несколько. Одну из них можно назвать теологической. То есть той, которая прописана в Библии. Согласно писаниям, до определенного момента Вселенная была скрыта от других и являлась чем-то невидимым, недостижимым для чужих глаз.

Вселенная

Другие же предположения исходили из научных соображений. Первым был Эйнштейн, утверждавший, что Вселенная находится в стационарном положении. Впоследствии его опроверг Фридман, доказавший ее сужение и расширение за счет определенных движений. Далее, по результатам исследований Хаббла, выяснились наиболее точные расстояния от других галактик и была создана теория Большого взрыва.

Источник: https://kosmosgid.ru/astronomiya/kosmologiya/sovremennaya-kosmologiya

Book for ucheba
Добавить комментарий