Круговорот второстепенных элементов

Круговорот второстепенных элементов и пестицидов

Круговорот второстепенных элементов

Второстепенные элементы – это элементы, которые не представляют особой ценности для организма. Они нередко мигрируют между средой и организмами. Большинство из них принимает участие в общем осадочном механизме, некоторые могут поступать в атмосферу.

Есть элементы, которые, не будучи биогенными, могут поступать в атмосферу.

Есть элементы, которые, не будучи биогенными, могут концентрироваться в определенных тканях живых организмов, причем при достижении определенных концентраций становятся опасными для жизнедеятельности.

В окружающую среду поступает значительное количество элементов, которые связаны с деятельностью человека и представляют опасность для его здоровья. Поэтому при проведении экологических исследований необходимо учитывать круговороты практически всех элементов и соединений.

Многие второстепенные элементы в обычных для экосистемы концентрациях почти не оказывают влияния на состояние организмов, поэтому их круговорот до недавнего времени мало интересовал экологов.

В качестве примера можно привести стронций.

Раньше этому элементу не придавали особого значения, однако в связи с тем, что стронций появился в биосфере в больших количествах и представляет опасность для здоровья, интерес к нему резко возрос.

Опасность стронция состоит в том, что по химическим свойствам он похож на кальций, поэтому, попав в организм, накапливается в костях и находится в непосредственной близости к кроветворным тканям.

При изучении осадочного цикла установлено, что около 7 % всего осадочного материала, стекающего вниз по рекам, составляет кальций, а на каждую тысячу атомов кальция приходится два-четыре атома стронция.

Одним из продуктов расщепления ядер урана является радиоактивный Sr-90, который характеризуется относительно длительным периодом полураспада и, попав в биосферу, может длительное время участвовать в круговороте. Это изотоп, которого не существовало в природе до расщепления атома человеком.

Небольшие количества Sr-90, содержащегося в осадках, выпавших после испытаний ядерного оружия и аварий на предприятиях ядерно-топливного цикла, мигрируют вместе с кальцием по пищевым цепям и накапливаются в костных тканях.

По мнению некоторых медиков, уже в 1970 году Sr-90 содержался в костях людей в количестве, достаточном для канцерогенного действия. Когда была достигнута договоренность о запрещении испытаний ядерного оружия в атмосфере, опасность загрязнения Sr-90еншилась, но после аварии на Чернобыльской АЭС она многократно возросла.

Опасным продуктом деления ядра является Cs-137, который по своим свойствам близок к калию. Обладая большой подвижностью, он с достаточно высокой скоростью циркулирует по пищевым цепям.

В качестве примера химического элемента, который и ранее существовал в природе, но не представлял такой опасности для здоровья человека, как сегодня, можно привести ртуть.

Разработка месторождений и промышленное использование ртути привели к значительному рассеиванию ее в биосфере, что повысило вероятность контактирования ядовитого металла с организмами.

В круговороте ртути важную роль играют микроорганизмы, которые превращают нерастворимые ее формы в растворимую, часто очень подвижную ядовитую метилртуть.

Аналогично положение и с другими тяжелыми металлами, такими как кадмий, медь, цинк, свинец и др.

Рис. 2.7. Движение пестицидов в биосфере

Распространение и накопление второстепенных элементов можно проиллюстрировать на примере круговорота пестицидов (Рис. 2.7). В зависимости от условий применения этих токсинов некоторое их количество испаряется и переносится в виде аэрозолей на значительные расстояния. При попадании на растения не все пестициды включаются в метаболизм.

Частично они испаряются с поверхности растений и могут переноситься ветром на другие территории, но большая их часть попадает в почву. Это связано с тем, что проективное покрытие растений никогда не достигает 100 % и при внесении пестицидов они попадают не только на листовую поверхность растений, но и на почву.

Некоторое их количество оседает с растений на почву под действием гравитационных сил и ветра.

Попав на поверхность, некоторое количество пестицидов в результате выщелачивания может проникнуть в грунтовые воды, а затем в гидрографическую сеть.

Значительная часть внесенных пестицидов может сорбироваться почвой и под воздействием водно-эрозионных процессов попадает в гидрографическую сеть. Пестициды, которые при попадании на растения включаются в метаболизм, после разложения растительных осадков могут включаться в различные биогеохимические циклы.

Таким образом, круговорот пестицидов в некоторой степени связан с атмосферой и осадочным циклом. В круговороте могут принимать участие только те пестициды, которые имеют большой период разложения (хлорорганические).

Кроме самих пестицидов, в круговороте в отдельных случаях принимают участие и их составляющие (ртуть содержащие пестициды). Что же касается не стойких к разложению пестицидов, то их круговорот разомкнут.

Например, гербицид раундап разлагается на углекислый газ и воду в течение одной недели.

В настоящее время для предотвращения накопления пестицидов в природной среде запрещено производство и применение пестицидов, стойких к разложению.

Просмотров 490 Эта страница нарушает авторские права

Источник: https://allrefrs.ru/1-19842.html

Круговорот второстепенных элементов

Круговорот второстепенных элементов

Круговорот фосфора

Фосфор— один из наиболее важных биогенных компонентов. Он входит в состав нуклеиновых кислот, клеточных мембран, систем аккумуляции и переноса энергии, костной ткани и дентина. Круговорот фосфора всецело связан с деятельностью организмов.

Фосфор создает круговорот в наземных системах в качестве важной и необходимой части цитоплазмы. Биоредуценты минерализируют органические соединения фосфора отмерших организмов в фосфаты которые вновь потребляются корнями растений.

Громадные запасы фосфора накопились за прошлые геологические эпохи, которые содержат горные породы. В процессе разряжения эти породы отдают наземные фосфаты экосистемам. Некоторое количество фосфатов оказывается вовлеченным в круговорот воды возвращающейся в моря.

Здесь они обогащают соленые воды, питают фитопланктон и связанные с ним пищевые цепи. Затем с отмершими останками фосфаты погружаются в морские глубины.

Часть их отлагается в пределах достигаемости морских экосистем, используется ими, частичный возврат фосфатов на землю возможен с помощью морских птиц, рыболовства и т.д. Каждый год примерно возвращается 60 тон фосфора.

Второстепенные элементы подобно жизненно важным мигрируют между организмами и средой, хотя и не представляют ценности для организмов. Но в окружающую среду часто попадают побочные продукты промышленности, содержащие высокие концентрации тяжелых металлов, радиоактивные элементы и ядовитые органические соединения.

Радиоактивный Sг-90 крайне опасен для человека и животных. По химическим свойствам он похож на кальций и поэтому, попав в организм, накапливается в костях и оказывается в опасном контакте с костным мозгом — кровеносной тканью.

Радиоактивный СS-137 — по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям.

Sг-90 и СS-137 — новые вещества, которые не существовали в природе до того, как человек расщепил атом. Они характеризуются длительными периодами полураспада. Аккумуляция этих радиоактивных изотопов в организме человека создает постоянный источник облучения, приводящего к канцерогенезу.

Для того чтобы количественно определить повторно используемую часть вещества в обороте, предложен коэффициент рециркуляцииотношение суммарных количеств вещества, циркулирующих между разными отделами системы, к общему потоку вещества через всю систему:

СI — ТSТС / ТSТ,

где СI — коэффициент рециркуляции, ТSТС — рециркулируемая доля потока через систему и ТSТ — общий поток вещества через систему.

Элементы, которые человек считает ценными (платина, золото), повторно используются на 90% и более. Однако коэффициент рециркуляции энергии равен нулю.

ТЕМА 7: ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ,

ИХ КЛАССИФИКАЦИЯ

Они характеризуют среду обитания организмов, условия среды обычно определяют как экологические факторы, оказывающие влияние на существование, географическое распространение живых существ.

Экологический фактор – любое условие среды, способное оказывать прямое или косвенное воздействие на живые организмы.

Экологические факторы делятся на три категории:

1. Абиотические – факторы неживой природы;

2. Биотические – факторы живой природы;

3. Антропогенные – факторы человеческой деятельности.

1 Абиотические факторы наземной среды:

-Свет. Поступающая от Солнца лучистая энергия распределяется следующим образом. На видимую часть спектра с длиной волны 400-750 км приходится 48% солнечной радиации.

Наиболее важную роль для фотосинтеза играют оранжево-красные лучи, на которые приходится 45% солнечной радиации. Инфракрасные лучи с длиной волны более 750км не воспринимаются многими животными и растениям, но являются необходимыми источниками тепловой энергии.

На ультрафиолетовую часть спектра – менее 400 км – приходится 7% солнечной энергии.

-Ионизирующее излучение –это излучение с очень высокой энергией, способное выбивать электроны из атомов и присоединять их к другим атомам с образованием пар положительных и отрицательных ионов. Источник ионизирующего излучения – радиоактивные вещества и космические лучи. Единица дозы излучения, которую получает человек, называется бэр (биологические эквивалент рентгена); 1 бэр = 0,01 Дж/кг.

Таблица 1

Дозы излучения

Источник излучения Доза
Фоновое излучение за год 100 мбэр
Допустимое облучение за год 500 мбэр
Телевизор, компьютер 500 мбэр
Рентгенография зубов 3 бэр
Рентгенография желудка 25 бэр
Лучевая болезнь (легкая) 100 бэр
Лучевая болезнь (тяжелая) 450 бэр
Допустимые аварийные облучения населения 10 бэр

В течении года человек в среднем получает дозу 0,1 бэр и, следовательно, за всю жизнь (в среднем 70 лет) 7 бэр.

-Влажность атмосферного воздуха –параметр, характеризующий процесс насыщения его водяными парами. Разность между максимальным (предельным) насыщением и данным насыщением называется дефицитом влажности. Чем выше дефицит, тем суше и теплее, и наоборот.

Растения пустынь приспосабливаются к экономному расходованию влаги. Они имеют длинные корни и уменьшенную поверхность листьев. Пустынные животные способны к быстрому и продолжительному бегу для длинных маршрутов на водопой.

Внутренним источником воды у них служит жир, при окислении 100г которого образуется 100г воды.

-Осадки. Являются результатом конденсации водяных паров. Они играют важную роль в круговороте воды на Земле. В зависимости от характера их выпадения выделяют гумидные (влажные) и аридные (засушливые) зоны.

-Газовый состав атмосферы. Важнейшим биогенным элементом атмосферы, который участвует в образовании белков в организме, является азот.

Кислород, поступающий в атмосферу в основном от зеленых растений, обеспечивает дыхание. Углекислый газ является естественным демпфером солнечного и ответного земного излучений.

Озон выполняет экранирующую роль по отношению ультрафиолетовой части солнечного спектра.

-Температура. На поверхности Земли определяется температурным режимом атмосферы и тесно связана с солнечным излучением. Для большинства наземных животных и растений температурный оптимум колеблется от 15 до 30ºС.

Абиотические факторы водной среды:

На доля мирового океана приходится 71% земной поверхности. Водная среда отличается от наземной плотностью и вязкостью. Плотность воды в 800 раз, а вязкость в 55 раз больше воздуха.

Наряду с этим важнейшими особенностями водной среды являются: подвижность, температурная стратификация, прозрачность и соленость, от которых зависит фотосинтез бактерий и фитопланктона и своеобразие среды обитания гидробионтов.

2 Биотические факторы окружающей среды:

Под биотическими факторами понимают совокупность влияния жизнедеятельности одних организмов на другие.

3 Антропогенные факторы окружающей среды:

Антропогенные факторы окружающей среды обязаны своим происхождением комплексной техногенной деятельности человека на Земле, включающей его бытовую сферу (сжигание мусора и отходов, строительство и т.д.) и производственную деятельность (все отрасли промышленной индустрии, сельское хозяйство, нефте-, газо- и горнодобывающие отрасли и т.д.).

Воздействие антропогенных факторов на биосферу.Современный период развития мировой экономики связан с интенсификацией производства, увеличением объемов используемых природных ресурсов и поступлением во все возрастающих масштабах вредных веществ в биосферу. Научно-техническая революция обостряет проблемы природопользования.

В процессе своей деятельности человек по-разному влияет на составные части биосферы. Причины или факторы такого влияния называют антропогенными (от греч. anthropos — человек), они приводят к истощению природных ресурсов, загрязнению природной среды и образованию искусственных ландшафтов.

Рассмотрим некоторые из них, имеющие земной глобальный характер.

Средняя температура на поверхности Земли за 100 лет увеличилась на 0,5 – 0,6°С, зимняя — еще больше из-за ежегодных поступлений в атмосферу углекислого газа (0,4%), метана (1%), оксида азота (0,2%), затрудняющих отдачу тепла с поверхности (парниковый эффект).

Источниками таких газов служат сжигание природного топлива и антропогенное нарушение работы микробных сообществ в почвах Сибири и Северной Америки. При неизменной современной антропогенной нагрузке температура тем не менее будет подниматься на 0,5°С каждые 10 лет.

За последнее десятилетие накопилось около 20 млн. т пылевых частиц, 600 тыс. т меди, 4,5 млн. т свинца, 3 млн. т цинка.

Ведомственный монополизм в развитии промышленности, пренебрежение реальными потребностями общества и затратный механизм привели к сырьевой специализации экспорта в России.

За последние годы, разбазаривая невосполнимые природные ресурсы, ведомства организовали экспорт на 80% из сырья и топлива.

Для сравнения развивающиеся страны Африки экспортируют 90% добываемого сырья, а страны Латинской Америки — около 50%.

В сложившихся условиях России грозит экологический колониализм, который будет проявляться в вывозе по дешевым ценам минерального и лесного сырья, топлива, эксплуатации земельных ресурсов, выносе в развивающиеся страны «грязных» отраслей, экспорте экологически опасных технологий и товаров, захоронении токсичных химических и радиоактивных отходов. Эта опасность возросла с развитием предпринимательской деятельности. Антропогенная растительность — сообщество растений, возникающее в результате деятельности человека: посевы, посадка деревьев, выпас скота, осушение болот и др.

Источник: https://studopedia.su/2_48064_krugovorot-vtorostepennih-elementov.html

Круговорот второстепенных элементов: цезия и стронция

Круговорот второстепенных элементов

Министерство образования и науки Российской Федерации

Пензенский Государственный Университет

Кафедра: Экологии и безопасности жизнедеятельности

Круговорот второстепенных элементов: цезия и стронция

Выполнил: студент гр. 06-лф-1

Карев С.А.

Пенза 2009

Круговорот второстепенных элементов

Второстепенные элементы, подобно жизненно важным, нередко мигрируют между организмами и средой, хотя и не представляют какой-либо ценности для организмов. Большинство из этих элементов участвуют в общем осадочном цикле. Обычно они оказывают малое воздействие на живые существа.

Однако могут быть и неожиданные последствия, связанные в основном с деятельностью человека. Например, радиоактивный стронций-90, ранее в природе не существовавший, по химическим свойствам похож на кальций, поэтому, попав в организмы, он накапливается в костях и оказывается в тесном контакте с кроветворными тканями.

Радиоактивный цезий-137 по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям [4].

Це́зий — элемент главной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 55. Обозначается символом Cs (лат. Caesium). Простое вещество цезий — мягкий щелочной металл серебристо-жёлтого цвета.

Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой). Цезий был открыт в 1860 году немецкими учёными Р. В. Бунзеном и Г. Р.

Кирхгофом в водах Дюрхгеймского минерального источника в Германии методом оптической спектроскопии, тем самым, став первым элементом, открытым при помощи спектрального анализа. Цезий – один из редчайших элементов, но всё же следы его можно найти во многих горных породах, в морской воде, а также в воде минеральных источников.

Любопытно, что “крохи” цезия обнаружены в сахарной свекле, зернах кофе, чайных листьях. Знаком с ним и каждый курильщик: об этом свидетельствуют две голубые линии в спектре табачного пепла.

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs)[BF4]. Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит [1].

При промышленном получении цезий в виде соединений извлекается из минерала поллуцита.

В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала.

Цезий входит в группу химических элементов с ограниченными запасами вместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс.

тонн (в пересчёте на окись цезия), но они крайне распылены, и, к сожалению, сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом, настоящем и будущем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт.

По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье.

Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: во-первых, его извлечение из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы его руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий.

Природный цезий — мононуклидный элемент, состоящий из единственного стабильного нуклида 133Cs. На сегодняшний день известно 39 искусственных радиоактивных изотопов цезия с массовыми числами от 112 до 151.

Самым долгоживущим искусственным радиоактивным нуклидом цезия является 135Cs с периодом полураспада t1/2 около 2,3 миллиона лет. Другой относительно долгоживущий изотоп 137Cs (t1/2=30,17 года).

Оба эти долгоживущих радионуклида являются продуктами ядерного распада.

Ученые из индийского Института геофизических исследований, изучившие воду 60 горячих источников в Гималаях, пришли к выводу, что высокая концентрация цезия в воде может быть признаком магматической активности недр.

Повышенная концентрация радиоактивного изотопа цезия-137 обнаружена в деревьях, сохранившихся в районе знаменитого Тунгусского взрыва, причем химическая аномалия характерна как раз для тех слоев ствола, которые относятся к 1908 году, когда произошло это событие [3].

Цезий в живых организмах

Цезий в живых организмах — постоянный химический микроэлемент организма растений и животных. Морские водоросли например содержат от 0,01-0,1 мкг цезия в 1 г сухого вещества, наземные растения — 0,05—0,2. Животные получают цезий с водой и пищей.

В организме членистоногих около 0,067—0,503 мкг/г цезия, пресмыкающихся — 0,04, млекопитающих — 0,05.

Главное депо цезия в организме млекопитающих — мышцы, сердце, печень; в крови — до 2,8 мкг/л цезий относительно малотоксичен; его биологическая роль в организме растений и животных окончательно не раскрыта.

Цезий-137 — радиоактивный изотоп цезия, испускающий бета излучение и гамма-кванты, и один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций.

Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления Cs-137 наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников.

В организме животных Cs-137 накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц.

Накапливается в грибах, ряд которых (маслята, моховики, свинушка, горькушка, польский гриб) считается «аккумуляторами» радиоцезия [1].

Стронций

Стро́нций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета.

стронция в земной коре — 0,384 % в свободном виде стронций не встречается. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO4. Добывают также стронцианит SrCO3. Эти два минерала имеют промышленное значение [2].

Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).

В природе стронций встречается в виде смеси 4 стабильных изотопов 84Sr (0,56 %), 86Sr (9,86 %), 87Sr (7,02 %), 88Sr (82,56 %).

Стронций все увереннее прокладывает себе дорогу в промышленность, спрос на него непрерывно растет. Большинство минералов стронция встречается довольно редко; лишь уже знакомый нам стронцианит и целестин (по-латыни – “небесный”) образуют иногда солидные скопления.

Вот как описывает свою встречу с целестином замечательный советский геохимик и минералог академик А. Е. Ферсман: “…вдруг в одном разломанном желвачке я увидел какой-то голубой кристаллик: о, это был настоящий целестин! Чудесная прозрачная голубая иголочка, как светлый сапфир с острова Цейлон, как светлый, выгоревший на солнце василек”.

Но целестин бывает не только голубым – не менее чудесны его нежно-фиолетовые, розоватые или дымчато-черные кристаллы, встречающиеся в пустотах горных пород. Необыкновенно красивы зеленоватые россыпи его мелких зерен на друзах янтарно-желтой серы.

Пути образования в природе целестина (он представляет собой сернокислую соль стронция) различны, и, чтобы поведать об одном из них, мы снова предоставим слово академику А. Е. Ферсману, поскольку вряд ли кто-нибудь сможет рассказать об этом интереснее и поэтичнее, чем он: “…

Давно-давно, несколько десятков миллионов лет тому назад верхнеюрское море докатывало свои волны до мощных, тогда уже существовавших Кавказских хребтов…

На дне прибрежной полосы, на камнях в бесчисленных количествах жили маленькие радиолярии; некоторые из них были прозрачны, как стекло, другие представляли собой мелкие белые шарики не больше одного миллиметра, с маленьким стебельком, в три раза большим, чем туловище.

Они сидели на камнях, на красивых зарослях мшанок, а иногда покрывали даже иглы морских ежей, путешествуя с ними по морскому дну. Это были знаменитые радиолярии-акантарии, скелеты которых состояли из иголочек, числом от 18 до 32.

Долгое время никто не знал, из чего они образованы, и только случайно было обнаружено, что они состоят не из кремнезема, не из опала, а из сернокислого стронция.

Эти бесчисленные радиолярии накапливали в сложном жизненном процессе соль сернокислого стронция, извлекая ее из морской воды, и постепенно строили свои кристаллические иголочки.

Отмирающие радиолярии падали на дно моря. Так было положено начало скоплениям одного из редких металлов…” Добавим, что не только радиолярии, но и другие морские организмы неравнодушны к стронцию: ученые находили спиральные раковины давно вымерших моллюсков, состоящие из целестина. Некоторые из них достигали внушительных размеров – до 40 сантиметров в поперечнике.

В природе имеются довольно крупные так называемые вулканогенно-осадочные месторождения стронция, например в пустынях Калифорнии и Аризоны в США. (Кстати, замечено, что стронций “любит” жаркий климат, поэтому в северных странах он встречается гораздо реже.). В третичную эпоху этот район был ареной бурной вулканической деятельности.

Термальные воды, поднимавшиеся вместе с лавой из земных недр, были богаты стронцием. Расположенные среди вулканов озера накапливали этот элемент, образуя за тысячелетия весьма солидные его запасы. Есть стронций и в водах Кара-Богаз-Гола.

Постоянное испарение вод залива приводит к тому, что концентрация солей непрерывно возрастает и наконец достигает точки насыщения – соли выпадают в осадок. стронция в этих осадках иногда составляет 1-2 %.

Несколько лет назад геологи обнаружили значительное месторождение целестина в горах Туркмении. Голубые пласты этого ценного минерала залегают на склонах ущелий и глубоких каньонов Куштангтау-горного хребта в юго-западной части Памиро-Алая. Нет сомнения, что туркменский “небесный” камень успешно послужит нашему народному хозяйству. …

Природе не свойственна торопливость: сейчас человек использует запасы стронция, которые она начала создавать миллионы лет назад.

Но и сегодня в глубинах земли, в толще морей и океанов происходят сложные химические процессы, возникают скопления ценных элементов, рождаются новые клады, но достанутся они уже не нам, а нашим далеким-далеким потомкам [3].

Стронций в живых организмах

Стронций — составная часть микроорганизмов, растений и животных. У морских радиолярий (акантарий) скелет состоит из сульфата Стронций — целестина.

Морские водоросли содержат 26—140 мг Стронций на 100 г сухого вещества, наземные растения — 2,6, морские животные — 2—50, наземные животные — 1,4, бактерии — 0,27—30.

Накопление Стронций различными организмами зависит не только от их вида, особенностей, но и от соотношения в среде Стронций с др. элементами, главным образом с Ca и Р, а также от адаптации организмов к определённой геохимической среде.

Животные получают Стронций с водой и пищей. Всасывается Стронций тонким, а выделяется в основном толстым кишечником. Ряд веществ (полисахариды водорослей, катионообменные смолы) препятствует усвоению Стронций Главное депо Стронций в организме — костная ткань, в золе которой содержится около 0,02% Стронций (в др. тканях — около 0,0005%).

Избыток солей Стронций в рационе крыс вызывает «стронциевый» рахит. У животных, обитающих на почвах со значительным количеством целестина, наблюдается повышенное содержание Стронций в организме, что приводит к ломкости костей, рахиту и др. заболеваниям. В биогеохимических провинциях, богатых Стронций (ряд районов Центральной и Восточной Азии, Северной Европы и др.

), возможна т. н. уровская болезнь.

Стронций-90

Среди искусственных изотопов Стронций его долгоживущий радионуклид 90Sr — один из важных компонентов радиоактивного загрязнения биосферы.

Попадая в окружающую среду, 90Sr характеризуется способностью включаться (главным образом вместе с Ca) в процессы обмена веществ у растений, животных и человека. Поэтому при оценке загрязнения биосферы 90Sr принято рассчитывать отношение 90Sr/Ca в стронциевых единицах (1 с.

е. = 1 мк мккюри 90Sr на 1 г Ca).

При передвижении 90Sr и Ca по биологическим и пищевым цепям происходит дискриминация Стронций, для количественного выражения которой находят «коэффициент дискриминации», отношение 90Sr/Ca в последующем звене биологической или пищевой цепи к этой же величине в предыдущем звене. В конечном звене пищевой цепи концентрация 90Sr, как правило, значительно меньше, чем в начальном.

В растения 90Sr может поступать непосредственно при прямом загрязнении листьев или из почвы через корни (при этом большое влияние имеет тип почвы, сё влажность, pH, содержание Ca и органических веществ и т.д.).

Относительно больше накапливают 90Sr бобовые растения, корне- и клубнеплоды, меньше — злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90Sr, чем в др. органах (например, в листьях и стеблях пшеницы 90Sr в 10 раз больше, чем в зерне).

У животных (поступает в основном с растительной пищей) и человека (поступает в основном с коровьим молоком и рыбой) 90Sr накапливается главным образом в костях.

Величина отложения 90Sr в организме животных и человека зависит от возраста особи, количества поступающего радионуклида, интенсивности роста новой костной ткани и др. Большую опасность 90Sr представляет для детей, в организм которых он поступает с молоком и накапливается в быстро растущей костной ткани.

Биологическое действие 90Sr связано с характером его распределения в организме (накопление в скелете) и зависит от дозы b-облучения, создаваемого им и его дочерним радиоизотопом 90Y.

При длительном поступлении 90Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Существенные изменения в костной ткани наблюдаются при содержании 90Sr в рационе около 1 мккюри на 1 г Ca.

Заключение в 1963 в Москве Договора о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой привело к почти полному освобождению атмосферы от 90Sr и уменьшению его подвижных форм в почве [2].

Основным источником загрязнения природы радиоактивным стронцием были испытания ядерного оружия и аварии на атомных электростанциях. Поэтому из радиоактивных изотопов стронция наибольший практический интерес представляют нуклиды с массовыми числами 89 и 90, выход которых, в большом количестве наблюдается в реакциях деления урана и плутония.

Выпавший на поверхность Земли радиоактивный стронций попадает в почву. Из почвы радионуклиды через корневую систему поступают в растения. Следует заметить, что на этом этапе большую роль играют свойства почвы и вид растения.

Выпадающие на поверхность почвы радионуклиды на протяжении многих лет могут оставаться в её верхних слоях.

И ТОЛЬКО если почва бедна такими минералами как кальций, калий, натрий, фосфор создаются благоприятные условия для миграции радионуклидов в самой почве и по цепи почва – растение. В первую очередь это относится к дерново-подзолистым и песчано-суглинистым почвам.

В чернозёмных почвах подвижность радионуклидов крайне затруднена. Теперь о растениях. В наибольших количествах стронций накапливается в бобовых, корнеплодах, и в меньшей мере (в 3-7 раз) в злаковых.

Животным радиоактивный стронций в основном поступает с кормом. Так как стронций относится к типичным остеотропным радионуклидам, он откладывается в костях.

По величине отложений нуклида в скелете сельскохозяйственных животных их располагают в следующей последовательности: крупный рогатый скот, козы, овцы, свиньи, куры.

Помимо скелета наибольшая концентрация стронция отмечена в печени и почках, минимальная – в мышцах и жире.

У лактирующих животных стронций выводится с молоком. Суточное выведение у коров разной продуктивности достигает 0,2 – 5%, у коз – 1,3%, овец 1-6% в литре от суточного поступления. Переход нуклида Sr90 из корма в молоко оценивается как 0,1% в 1 литр удоя. При переработке молока в масло переходит лишь около 1% стронция 90.

Переход 90Sr из кормового рациона курей в яйцо достигает 40% суточного поступления радионуклида, а у низкопродуктивных кур может достигать 60%. стронция в скорлупе достигает 96%, в желтке и белке содержится соответственно 3,5% и 0,2%.

стронция в морепродуктах зависит от содержания нуклида в воде и степени её минерализации. Так у рыб выловленных их Балтийского моря содержание стронция оказалось в 5 раз больше, чем у рыб Атлантического океана. У рыб стронций также в основном накапливается в скелете.

Поэтому после кулинарной обработки рыбы можно получить более загрязненный продукт, чем тот, что был в начале. Так при приготовлении ухи часть радионуклидов содержащихся в костях переходит в бульон.

Может также увеличиваться поступление Sr90 из рыбы при её консервировании за счёт высокой температуры под давлением, в результате которой обычно несъедобные кости размягчаются и превращаются в съедобные.

Биологическому действию радиоактивного стронция посвящены многочисленные научные публикации. Однако насколько опасно хроническое поступление в организм человека малых количеств стронция до конца не изучено.

В попытках докопаться до истины, учёные исследовали биологическое действие радиоактивного стронция на многих видах животных. Самый большой практический интерес представляют опыты, проведенные на собаках, поскольку радиочувствительность их примерно такая же, как и у человека. Результаты опытов показали, что и у собак, и у крыс отклонения фиксировались только при достаточно больших дозах [3].

Список литературы:

1) Моисеев А. А., Рамзаев П. В. «Цезий-137 в биосфере» / М. / 1975;

2) Бурков В. В., Подпоряна Е. К. «Стронций» / М. /1962;

3) Юдинцева Е. В., Гулякин И. В. «Агрохимия радиоактивных изотопов стронция и цезия» / М. / 1968;

4) Ковальский В. В. «Геохимическая экология» / М. / 1974.

Источник: https://zinref.ru/000_uchebniki/02800_logika/011_lekcii_raznie_31/817.htm

Book for ucheba
Добавить комментарий