- Применение серы: физические свойства, соединения, получение
- Применение серы
- Физические свойства
- Оптические свойства
- Cера — химические свойства, получение, соединения. VIа группа » HimEge.ru
- Нахождение серы в природе
- Аллотропные модификации серы
- Получение серы
- Химические свойства серы
- Биологическая роль р-элементов VIA группы. Применение их соединений в медицине
- Сера
- Основное и возбужденное состояние атома серы
- Природные соединения
- Сероводород – H2S
- Оксид серы – SO2
- Сернистая кислота
- Оксид серы VI – SO3
Применение серы: физические свойства, соединения, получение
Сера — минерал из класса самородных элементов. Сера представляет собой пример хорошо выраженного энантиоморфного полиморфизма. В природе образует 2 полиморфные модификации: a-сера ромбическая и b-сера моноклинная. При атмосферном давлении и температуре 95,6°С a-сера переходит в b-серу.
Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.
Применение серы
Примерно половина производимой серы используется в производстве серной кислоты. Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат.
Чистая сера:
- Необходима для того, чтобы превратить каучук в резину. Этот процесс называют вулканизацией каучука. Резиновая промышленность потребляет до 10% общего объема получаемой серы.
- Входит в состав лекарственных средств против паразитов и заболеваний кожи (чесотка, псориаз и др), средств для ванн против ревматизма и подагры, некоторых лекарств, принимаемых внутрь.
- Применяется в химической промышленности: почти 50% всей производимой в мире серы идет для получения серной кислоты, еще четверть — для получения сульфитов; до 15% используется в производстве инсектицидов для борьбы с вредителями винограда, хлопчатника и некоторых других культур.
Сера требуется для:
- изготовления красок и ультрамарина для лако-красочной промышленности, полимеров и синтетических волокон, диоксида серы, сероуглерода, сульфатов, люминофоров, эбонита, удобрений;
- изготовления многих пиротехнических и взрывчатых смесей, в том числе пороха и состава для спичечных головок;
- изготовления бумаги;
- создания некоторых сталей с особыми свойствами;
- дезинфекции овощехранилищ, птичников, подвалов в сельском хозяйстве;
- виноделия, при хранении овощей и фруктов.
Серосодержащие руды часто являются сырьем для получения цветных металлов.
Серная кислота применяется:
- в электротехнической промышленности для производства аккумуляторов;
- для очистки нефтепродуктов;
- для очистки проволоки и металлического листа от окалины, для травления металлических поверхностей;
- в изготовлении лекарственных средств и красителей;
- в химической промышленности в качестве сырья для производства широкого спектра химических веществ, для осушения газов, для повышения концентрации азотной кислоты.
Оксид серы используется для:
- получения серной и азотной кислоты, олеума, сульфитов, тиосульфатов;
- дезинфекции помещений в сельском хозяйстве, в виноделии, в консервировании плодово-ягодной продукции;
- отбеливания тканей (шерсти, шелка).
Сероводород находит применение в производстве чистой серы и серной кислоты, сульфитов и тиосульфатов.
Сера (англ. Sulphur) — S
Молекулярный вес | 32.06 г/моль |
Происхождение названия | Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur), предположительно, восходит к индоевропейскому корню *swelp — «гореть» |
IMA статус | действителен, описан впервые до 1959 (до IMA) |
Физические свойства
Цвет минерала | жёлтый, серно-жёлтый, коричневато- или зеленовато-жёлтый, оранжевый, белый |
Цвет черты | бесцветный |
Прозрачность | прозрачный, полупрозрачный |
Блеск | смоляной, жирный |
Спайность | несовершенная по {001}, {110} и {111} |
Твердость (шкала Мооса) | 1.5 — 2.5 |
Излом | неровный, раковистый |
Прочность | очень хрупкая |
Отдельность | отдельность по {111} |
Плотность (измеренная) | 2.07 г/см3 |
Радиоактивность (GRapi) | 0 |
Оптические свойства
Тип | двухосный (+) |
Показатели преломления | nα = 1.958 nβ = 2.038 nγ = 2.245 |
Максимальное двулучепреломление | δ = 0.287 |
Оптический рельеф | очень высокий |
Плеохроизм | видимый |
Рассеивание | относительно слабое r |
Источник: https://vseprokamni.ru/vidy/drugie/primenenie-sery.html
Cера — химические свойства, получение, соединения. VIа группа » HimEge.ru
Сера расположена в VIа группе Периодической системы химических элементов Д.И. Менделеева.
На внешнем энергетическом уровне атома серы содержится 6 электронов, которые имеют электронную конфигурацию 3s23p4.
В соединениях с металлами и водородом сера проявляет отрицательную степень окисления элементов -2, в соединениях с кислородом и другими активными неметаллами – положительные +2, +4, +6.
Сера – типичный неметалл, в зависимости от типа превращения может быть окислителем и восстановителем.
Нахождение серы в природе
Сера встречается в свободном (самородном) состоянии и связанном виде.
Важнейшие природные соединения серы:
FeS2 — железный колчедан или пирит,
ZnS — цинковая обманка или сфалерит (вюрцит),
PbS — свинцовый блеск или галенит,
HgS — киноварь,
Sb2S3 — антимонит.
Кроме того, сера присутствует в нефти, природном угле, природных газах, в природных водах (в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды). Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.
Аллотропные модификации серы
Аллотропия — это способность одного и того же элемента существовать в разных молекулярных формах (молекулы содержат разное количество атомов одного и того же элемента, например, О2 и О3, S2 и S8, Р2 и Р4 и т.д).
Сера отличается способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны S8, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета.
Открытые цепи имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую).
1) ромбическая — S8
t°пл. = 113°C; r = 2,07 г/см3
Наиболее устойчивая модификация.
2) моноклинная — темно-желтые иглы
t°пл. = 119°C; r = 1,96 г/см3
Устойчивая при температуре более 96°С; при обычных условиях превращается в ромбическую.
3) пластическая — коричневая резиноподобная (аморфная) масса
Неустойчива, при затвердевании превращается в ромбическую
Получение серы
- Промышленный метод — выплавление из руды с помощью водяного пара.
- Неполное окисление сероводорода (при недостатке кислорода):
2H2S + O2 → 2S + 2H2O
2H2S + SO2 → 3S + 2H2O
Химические свойства серы
Окислительные свойства серы
(S0 + 2ē → S-2)
1) Сера реагирует со щелочными металлами без нагревания:
2Na + S → Na2S
c остальными металлами (кроме Au, Pt) — при повышенной t°:
2Al + 3S –→ Al2S3
Zn + S –→ ZnS
2) С некоторыми неметаллами сера образует бинарные соединения:
H2 + S → H2S
2P + 3S → P2S3
C + 2S → CS2
Восстановительные свойства сера проявляет в реакциях с сильными окислителями:
(S — 2ē → S+2; S — 4ē → S+4; S — 6ē → S+6)
3) c кислородом:
S + O2 –t° → S+4O2
2S + 3O2 –t°;pt → 2S+6O3
4) c галогенами (кроме йода):
S + Cl2 → S+2Cl2
S + 3F2 → SF6
Со сложными веществами:
5) c кислотами — окислителями:
S + 2H2SO4(конц) → 3S+4O2 + 2H2O
S + 6HNO3(конц) → H2S+6O4 + 6NO2 + 2H2O
Реакции диспропорционирования:
6) 3S0 + 6KOH → K2S+4O3 + 2K2S-2 + 3H2O
7) сера растворяется в концентрированном растворе сульфита натрия:
S0 + Na2S+4O3 → Na2S2O3 тиосульфат натрия
Биологическая роль р-элементов VIA группы. Применение их соединений в медицине
Источник: http://himege.ru/sera-ximicheskie-svojstva/
Сера
Сера – элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к группе халькогенов – элементов VIa группы.
Сера – S – простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при религиозных обрядах.
Основное и возбужденное состояние атома серы
Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.
В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.
Природные соединения
- FeS2 – пирит, колчедан
- ZnS – цинковая обманка
- PbS – свинцовый блеск (галенит), Sb2S3 – сурьмяный блеск, Bi2S3 – висмутовый блеск
- HgS – киноварь
- CuFeS2 – халькопирит
- Cu2S – халькозин
- CuS – ковеллин
- BaSO4 – барит, тяжелый шпат
- CaSO4 – гипс
В местах вулканической активности встречаются залежи самородной серы.
Получение
В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.
H2S + O2 = S + H2O (недостаток кислорода)
SO2 + C = (t) S + CO2
Серу можно получить разложением пирита
FeS2 = (t) FeS + S
В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.
H2S + H2SO4 = S + H2O
Химические свойства
- Реакции с неметаллами
- Реакции с металлами
- Реакции с кислотами
- Реакции с щелочами
На воздухе сера окисляется, образуя сернистый газ – SO2. Реагирует со многими неметаллами, без нагревания – только со фтором.S + O2 = (t) SO2S + F2 = SF6S + Cl2 = (t) SCl2S + C = (t) CS2
При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.K + S = (t) K2SAl + S = Al2S3Fe + S = (t) FeS
При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.S + H2SO4 = (t) SO2 + H2OS + HNO3 = (t) H2SO4 + NO2 + H2O
Сера вступает в реакции диспропорционирования с щелочами.S + KOH = (t) K2S + K2SO3 + H2O
Сероводород – H2S
Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).
Получение
Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.
Al2S3 + H2O = (t) Al(OH)3↓ + H2S↑
FeS + HCl = FeCl2 + H2S↑
Химические свойства
- Кислотные свойства
- Восстановительные свойства
- Качественная реакция
Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).MgO + H2S = (t) MgS + H2OKOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)2KOH + H2S = K2S + 2H2OМеталлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.Ca + H2S = (t) CaS + H2
Сероводород – сильный восстановитель (сера в минимальной степени окисления S2-). Горит в кислороде синим пламенем, реагирует с кислотами.H2S + O2 = H2O + S (недостаток кислорода)H2S + O2 = H2O + SO2 (избыток кислорода)H2S + HClO3 = H2SO4 + HCl
Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.H2S + Pb(NO3)2 = PbS↓ + HNO3
Оксид серы – SO2
Сернистый газ – SO2 – при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся спички).
Получение
В промышленных условиях сернистый газ получают обжигом пирита.
FeS2 + O2 = (t) FeO + SO2
В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.
K2SO3 + H2SO4 = (t) K2SO4 + H2O + SO2↑
Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.
Cu + H2SO4(конц.) = (t) CuSO4 + SO2 + H2O
- Кислотные свойства
- Восстановительные свойства
- Как окислитель
С основными оксидами, основаниями образует соли сернистой кислоты – сульфиты.K2O + SO2 = K2SO3NaOH + SO2 = NaHSO32NaOH + SO2 = Na2SO3 + H2O
Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.Fe2(SO4)3 + SO2 + H2O = FeSO4 + H2SO4SO2 + O2 = (t, кат. – Pt) SO3
В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).CO + SO2 = CO2 + SH2S + SO2 = S + H2O
Сернистая кислота
Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.
Получение
SO2 + H2O ⇄ H2SO3
Химические свойства
- Диссоциация
- Кислотные свойства
- Окислительные свойства
- Восстановительные свойства
Диссоциирует в водном растворе ступенчато.H2SO3 = H+ + HSO3-HSO3- = H+ + SO32-
В реакциях с основными оксидами, основаниями образует соли – сульфиты и гидросульфиты.CaO + H2SO3 = CaSO3 + H2OH2SO3 + 2KOH = 2H2O + K2SO3 (соотношение кислота – основание, 1:2)H2SO3 + KOH = H2O + KHSO3 (соотношение кислота – основание, 1:1)
С сильными восстановителями сернистая кислота принимает роль окислителя.H2SO3 + H2S = S↓ + H 2O
Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.H2SO3 + Br2 = H2SO4 + HBr
Оксид серы VI – SO3
Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.
Получение
В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора (оксид ванадия – Pr, V2O5).
SO2 + O2 = (кат) SO3
В лабораторных условиях разложением солей серной кислоты – сульфатов.
Fe2(SO4)3 = (t) SO3 + Fe2O3
Химические свойства
- Кислотные свойства
- Окислительные свойства
Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли – сульфаты и гидросульфаты. Реагирует с водой с образованием серной кислоты.SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке – средняя соль)SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке – кислая соль)SO3 + Ca(OH)2 = CaSO4 + H2OSO3 + Li2O = Li2SO4SO3 + H2O = H2SO4
SO3 – сильный окислитель. Чаще всего восстанавливается до SO2.SO3 + P = SO2 + P2O5SO3 + H2S = SO2 + H2OSO3 + KI = SO2 + I2 + K2SO4
Источник: https://studarium.ru/article/173