Углерод

Содержание
  1. Углерод. Аллотропия углерода — урок. Химия, 8–9 класс
  2. Углерод (C)
  3. Углерод, как простое вещество
  4. Алмаз
  5. Графит
  6. Фуллерен
  7. Карбин
  8. Химические свойства углерода
  9. Применение углерода
  10. УГЛЕРОД
  11. Историческая справка
  12. Аллотропия
  13. Строение атома углерода
  14. Стандартная атомная масса
  15. Химические свойства углерода и некоторых его соединений
  16. Субоксид углерода
  17. Электронное строение оксидов углерода
  18. Угольная кислота
  19. Карбонаты
  20. Галогениды углерода
  21. Реакции графита
  22. Карбиды
  23. Азотпроизводные углерода
  24. Карбонилы
  25. Углеводороды
  26. Углерод — характеристика элемента и химические свойства
  27. Углерод как восстановитель:
  28.   Углерод как окислитель:
  29. Нахождение углерода в природе
  30. Неорганические соединения углерода
  31. Оксид углерода (II) СО
  32. Оксид углерода (IV) СO2
  33. Угольная кислота и еёсоли
  34. Карбиды
  35. Цианиды
  36. Карбонаты
  37. Химия углерода и его соединений
  38. Положение в периодической системе химических элементов
  39. Электронное строение углерода 
  40. Физические свойства 
  41. Качественные реакции
  42. Соединения углерода
  43. Химические свойства
  44. Строение молекулы и физические свойства
  45. Способы получения
  46. Химические свойства
  47. Карбонаты и гидрокарбонаты
  48. Гидролиз карбонатов и гидрокарбонатов

Углерод. Аллотропия углерода — урок. Химия, 8–9 класс

Углерод

Углерод — химический элемент № \(6\). Он расположен в IVА группе Периодической системы.

C6+6)2e)4e

На внешнем слое атома углерода содержатся четыре валентных электрона, и до его завершения не хватает четырёх электронов. Поэтому в соединениях с металлами углероду характерна степень окисления \(–4\), а при взаимодействии с более электроотрицательными неметаллами он проявляет положительные степени окисления: \( +2\) или \(+4\).

В природе углерод встречается как в виде простых веществ, так и в виде соединений. В воздухе содержится углекислый газ.

 В земной коре распространены карбонаты (например, CaCO3 образует мел, мрамор, известняк).

Горючие ископаемые (уголь, торф, нефть, природный газ) состоят из органических соединений, главным элементом которых является углерод. 

Углерод относится к жизненно важным элементам, так как входит в состав молекул всех органических веществ.

Углерод образует несколько аллотропных видоизменений, из которых наиболее известны алмаз и графит.

Алмаз имеет атомную кристаллическую решётку. Каждый атом углерода в алмазе связан четырьмя прочными ковалентными связями с соседними атомами, расположенными в вершинах тетраэдра.

Благодаря такому строению алмаз — самое твёрдое из известных природных веществ. Все четыре валентных электрона каждого атома углерода участвуют в образовании связей, поэтому алмаз не проводит электрический ток. Это бесцветное прозрачное кристаллическое вещество, хорошо преломляющее свет.

Графит тоже имеет атомную кристаллическую решётку, но устроена она иначе. Решётка графита слоистая. Каждый атом углерода соединён прочными ковалентными связями с тремя соседними атомами. Образуются плоские слои из шестиугольников, которые между собой связаны слабо. Один валентный электрон у атома углерода остаётся свободным.

Графит представляет собой тёмно-серое вещество с металлическим блеском, жирное на ощупь. В отличие от алмаза графит непрозрачный, проводит электрический ток и оставляет серый след на бумаге. У графита очень высокая температура плавления (\(3700\) °С).

Алмаз и графит взаимопревращаемы. При сильном нагревании без доступа воздуха алмаз чернеет и превращается в графит. Графит можно превратить в алмаз при высокой температуре и большом давлении.

Из мельчайших частиц графита состоят сажа, древесный уголь и кокс. Сажа образуется при неполном сгорании топлива. Древесный уголь получают при нагревании древесины без доступа воздуха, а кокс — переработкой каменного угля.

Древесный уголь имеет пористое строение и обладает способностью поглощать газы и растворённые вещества. Такое свойство называется адсорбцией.

Аллотропные модификации углерода в химических реакциях могут проявлять и окислительные, и восстановительные свойства. Окислительные свойства углерода выражены слабее, чем у других неметаллов второго периода (азота, кислорода и фтора).

  • Взаимодействие с металлами.

Углерод реагирует с металлами при высокой температуре с образованием карбидов:

4Al0+3C0=tAl+34C−43.

В этой реакции углерод выступает как окислитель.

  • Взаимодействие с водородом.

Реакция происходит при сильном нагревании. Образуется метан. Углерод — окислитель.

C0+2H02=tC−4H+14.

  • Взаимодействие с кислородом.

Углерод горит в кислороде с образованием углекислого газа и проявляет в этой реакции восстановительные свойства:

C0+O02=tC+4O−22.

  • Взаимодействие с оксидами металлов.

Углерод способен восстанавливать металлы из их оксидов:

2Cu+2O+C0=t2Cu0+C+4O2.

Применение простых веществ

Алмаз применяется:

  • для обработки твёрдых поверхностей;
  • для резки стекла;
  • для изготовления буров и свёрл;
  • для изготовления ювелирных украшений.

Графит используется:

  • при изготовлении карандашей;
  • как твёрдая смазка в подшипниках;
  • для изготовления электродов;
  • в качестве замедлителя нейтронов в ядерных реакторах;
  • для получения искусственных алмазов.

Сажа:

  • входит в состав типографской краски, крема для обуви;
  • используется как наполнитель для производства резины.

Уголь используется:

  • в противогазах, промышленных и бытовых фильтрах;
  • для очистки сахарного сиропа, спирта и т. д.;
  • в медицине.

Кокс применяется в металлургической промышленности.

Источник: https://www.yaklass.ru/p/himija/89-klass/khimiia-nemetallov-157456/uglerod-i-ego-soedineniia-163475/re-28df6da6-8e46-4344-9b2d-1694f2fff357

Углерод (C)

Углерод

  • Обозначение – C (Carbon);
  • Период – II;
  • Группа – 14 (IVa);
  • Атомная масса – 12,011;
  • Атомный номер – 6;
  • Радиус атома = 77 пм;
  • Ковалентный радиус = 77 пм;
  • Распределение электронов – 1s22s22p2;
  • t плавления = 3550°C;
  • t кипения = 4827°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,55/2,50;
  • Степень окисления: +4, +3, +2, +1, 0, -1, -2, -3, -4;
  • Плотность (н. у.) = 2,25 г/см3 (графит);
  • Молярный объем = 5,3 см3/моль.

Соединения углерода:

  • Оксиды углерода CO, CO2
  • Угольная кислота H2CO3 и ее соли

Углерод в виде древесного угля известен человеку с незапамятных времен, поэтому, о дате его открытия говорить не имеет смысла. Собственно свое название “углерод” получил в 1787 году, когда была опубликована книга “Метод химической номенклатуры”, в которой вместо французского названия «чистый уголь» (charbone pur) появился термин «углерод» (carbone).

Углерод обладает уникальной способностью образовывать полимерные цепочки неограниченной длины, порождая тем самым огромный класс соединений, изучением которых занимается отдельный раздел химии – органическая химия. Органические соединения углерода лежат в основе земной жизни, поэтому, о важности углерода, как химического элемента, говорить не имеет смысла – он основа жизни на Земле.

Сейчас рассмотрим углерод с точки зрения неорганической химии.

Углерод в Периодической таблице химических элементов Д. И. Менделеева, стоит под номером “6”, относится к 14(IVa) группе (См. Атомы 14(IVa) группы).

Рис. Строение атома углерода.

Электронная конфигурация углерода – 1s22s22p2 (см. Электронная структура атомов). На внешнем энергетическом уровне у углерода находятся 4 электрона: 2 спаренных на s-подуровне + 2 неспаренных на p-орбиталях.

При переходе атома углерода в возбужденное состояние (требует энергетических затрат) один электрон с s-подуровня “покидает” свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о.

, в возбужденном состоянии электронная конфигурация атома углерода приобретает следующий вид: 1s22s12p3.

Рис. Переход атома углерода в возбужденное состояние.

Такая “рокировка” существенно расширяет валентные возможности атомов углерода, которые могут принимать степень окисления от +4 (в соединениях с активными неметаллами) до -4 (в соединениях с металлами).

В невозбужденном состоянии атом углерода в соединениях имеет валентность 2, например, CO(II), а в возбужденном – 4: CO2(IV).

“Уникальность” атома углерода заключается в том, что на его внешнем энергетическом уровне находятся 4 электрона, поэтому, для завершения уровня (к чему, собственно, стремятся атомы любого химического элемента) он может с одинаковым “успехом”, как отдавать, так и присоединять электроны с образованием ковалентных связей (см. Ковалентная связь).

Углерод, как простое вещество

Как простое вещество углерод может находиться в виде нескольких аллотропных модификаций:

  • Алмаз
  • Графит
  • Фуллерен
  • Карбин

Алмаз

Рис. Кристаллическая решетка алмаза.

Свойства алмаза:

  • бесцветное кристаллическое вещество;
  • самое твердое вещество в природе;
  • обладает сильным преломляющим эффектом;
  • плохо проводит тепло и электричество.

Рис. Тетраэдр алмаза.

Исключительная твердость алмаза объясняется строением его кристаллической решетки, которая имеет форму тетраэдра – в центре тетраэдра находится атом углерода, который связан равноценно прочными связями с четырьмя соседними атомами, образующими вершины тетраэдра (см. рисунок выше). Такая “конструкция” в свою очередь связана с соседними тетраэдрами.

Графит

Рис. Кристаллическая решетка графита.

Свойства графита:

  • мягкое кристаллическое вещество серого цвета слоистой структуры;
  • обладает металлическим блеском;
  • хорошо проводит электричество.

В графите атомы углерода образуют правильные шестиугольники, лежащие в одной плоскости, организованные в бесконечные слои.

В графите химические связи между соседними атомами углерода образованы за счет трех валентных электронов каждого атома (изображены синим цветом на рисунке ниже), при этом четвертый электрон (изображен красным цветом) каждого атома углерода, расположенный на p-орбитали, лежащей перпендикулярно плоскости слоя графита, не участвует в образовании ковалентных связей в плоскости слоя. Его “предназначение” заключается в другом – взаимодействуя со своим “собратом”, лежащим в соседнем слое, он обеспечивает связь между слоями графита, а высокая подвижность p-электронов обусловливает хорошую электропроводность графита.

Рис. Распределение орбиталей атома углерода в графите.

Фуллерен

Рис. Кристаллическая решетка фуллерена.

Свойства фуллерена:

  • молекула фуллерена представляет собой совокупность атомов углерода, замкнутых в полые сферы типа футбольного мяча;
  • это мелкокристаллическое вещество желто-оранжевого цвета;
  • температура плавления = 500-600°C;
  • полупроводник;
  • входит в состав минерала шунгита.

Карбин

Свойства карбина:

  • инертное вещество черного цвета;
  • состоит из полимерных линейных молекул, в которых атомы связаны чередующимися одинарными и тройными связями;
  • полупроводник.

Химические свойства углерода

При нормальных условиях углерод является инертным веществом, но при нагревании может реагировать с разнообразными простыми и сложными веществами.

Выше уже было сказано, что на внешнем энергетическом уровне углерода находится 4 электрона (ни туда, ни сюда), поэтому углерод может, как отдавать электроны, так и принимать их, проявляя в одних соединениях восстановительные свойства, а в других – окислительные.

Углерод является восстановителем в реакциях с кислородом и другими элементами, имеющими более высокую электроотрицательность (см. таблицу электроотрицательности элементов):

  • при нагревании на воздухе горит (при избытке кислорода с образованием углекислого газа; при его недостатке – оксида углерода(II)): C + O2 = CO2; 2C + O2 = 2CO.
  • реагирует при высоких температурах с парами серы, легко взаимодействует с хлором, фтором: C + 2S = CS2 C + 2Cl2 = CCl4 2F2 + C = CF4
  • при нагревании восстанавливает из оксидов многие металлы и неметаллы: C0 + Cu+2O = Cu0 + C+2O; C0+C+4O2 = 2C+2O
  • при температуре 1000°C реагирует с водой (процесс газификации), с образованием водяного газа:C + H2O = CO + H2;

Углерод проявляет окислительные свойства в реакциях с металлами и водородом:

  • реагирует с металлами с образованием карбидов: Ca + 2C = CaC2
  • взаимодействуя с водородом, углерод образует метан:C + 2H2 = CH4

Углерод получают термическим разложением его соединений или пиролизом метана (при высокой температуре):
CH4 = C + 2H2.

Применение углерода

Соединения углерода нашли самое широкое применение в народном хозяйстве, перечислить все их не представляется возможным, укажем только некоторые:

  • графит применяется для изготовления грифелей карандашей, электродов, плавильных тиглей, как замедлитель нейтронов в ядерных реакторах, как смазочный материал;
  • алмазы применяются в ювелирном деле, в качестве режущего инструмента, в буровом оборудовании, как абразивный материал;
  • в качестве восстановителя углерод используют для получения некоторых металлов и неметаллов (железа, кремния);
  • углерод составляет основную массу активированного угля, который нашел широчайшее применение, как в быту (например, в качестве адсорбента для очистки воздуха и растворов), так и в медицине (таблетки активированного угля) и в промышленности (в качестве носителя для каталитических добавок, катализатора полимеризации и проч.).

Источник: https://prosto-o-slognom.ru/chimia/506_uglerod_C.html

УГЛЕРОД

Углерод
статьи

УГЛЕРОД, С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.).

Углерод широко распространен, но содержание его в земной коре всего 0,19%.

Рис. 1. СТРУКТУРА алмаза (а) и графита (б).
 

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента.

Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью.

Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al4C3, SiC, B4C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов.

Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ.

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь).

Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода.

Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Историческая справка

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789.

Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны «черный свинец», «карбидное железо», «серебристый свинец». В 1779 К.

Шееле установил, что графит можно окислить воздухом с образованием углекислого газа.

Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Аллотропия

Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации – алмаз, графит и фуллерен.

В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С–С, т.е. в структуре отсутствуют электроны проводимости.

Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2).

На разрыв связи С–С (длина связи 1,54 Å, отсюда ковалентный радиус 1,54/2 = 0,77 Å) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).

Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит – мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом·см).

Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C.

При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.

Структура графита (рис.

1,б) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 Å (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4 Å) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита – эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см3, алмаза – 3,51 г/см3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита.

Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода.

При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов.

К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь – примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты – коксовый газ (H2, CH4, CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса – коксовой печи – приведена на рис. 3.

Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии.

Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260°С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.

Строение атома углерода

Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13C (ок.

1,1%), а в следовых количествах существует в природе нестабильный изотоп 14C с периодом полураспада 5730 лет, обладающий b-излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO2.

После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14С. Снижение b-излучения 14CO2 пропорционально времени, прошедшему с момента смерти. В 1960 У.

Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии. См. также ДАТИРОВКА ПО РАДИОАКТИВНОСТИ.

В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s22s22px12py12pz0. Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ).

Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона.

Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды.

В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s-электронов и перескок одного из этих электронов на 2pz-орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°.

В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С–С с помощью общей электронной пары.

Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si–Si она составляет всего 210 кДж/моль, поэтому длинные цепочки –Si–Si– неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF4 и CCl4.

Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры. См. ХИМИЯ ОРГАНИЧЕСКАЯ.

В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды – углеводороды, в которых водород замещен на фтор.

Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды).

В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С60 по форме полого шара, имеющего совершенную симметрию футбольного мяча.

Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»).

Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С60 ~ 1нм.

В центре такой молекулы достаточно пространства для помещения большого атома урана. См. также ФУЛЛЕРЕНЫ.

Стандартная атомная масса

В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе. См. АТОМНАЯ МАССА.

Химические свойства углерода и некоторых его соединений

Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:

Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов.

Субоксид углерода

C3O2 образуется при дегидратации малоновой кислоты над P4O10:

C3O2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.

ФИЗИЧЕСКИЕ СВОЙСТВА ОКСИДОВ УГЛЕРОДА
COCO2C3O2
Молекулярная масса28,01044,01068,030
Температура кипения, °С–192–56,6–7
Температура замерзания, °С–199–78,5–111,3
Плотность, г/л (при 0° С)1,2501,9771,114
Растворимость, объем/объем воды (при 0° С)0,031,7Реагирует с водой

Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль.

Кокс при температуре белого каления реагирует с водой: C + H2O = CO + H2; образующаяся газовая смесь называется «водяной газ» и является газообразным топливом.

СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO2: CO + O2 → CO2, эта реакция сильно экзотермична (283 кДж/моль).

СО применяют в промышленности в смеси с H2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO2, но при 1000° C равновесие устанавливается при малых концентрациях СO2.

CO реагирует с хлором, образуя фосген – COCl2, аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO)x, являющиеся комплексными соединениями.

Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа – более прочное соединение.

В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО – «угарный газ»). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице.

Диоксид углерода, или оксид углерода(IV)CO2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO2 (тривиальное название – «углекислый газ») образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО2:

Такой реакцией часто пользуются в лабораторной практике для получения CO2. Этот газ можно получить и при прокаливании бикарбонатов металлов:

при газофазном взаимодействии перегретого пара с СО:

при сжигании углеводородов и их кислородпроизводных, например:

Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же – СO2 и H2O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:

CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO3 < SrCO3 < BaCO3. Углекислый газ – химически неактивное соединение, однако в некоторых случаях он может поддерживать процесс горения, например, магний горит в среде СО2.

Материалы, горящие при низких температурах – дерево, нефтепродукты, бумага и др., – не горят в среде СО2. Поэтому, а также из-за большей, чем у воздуха, плотности (СO2 в 1,5 раза тяжелее), углекислый газ используют в огнетушителях. В твердом состоянии СО2 известен как «сухой лед». При высоких концентрациях CO2 опасен для человека, так как блокирует доступ кислорода (см.

также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА).

Электронное строение оксидов углерода

Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар – тремя резонансными формами:

Все оксиды углерода имеют линейное строение.

Угольная кислота

При взаимодействии СO2 с водой образуется угольная кислота H2CO3. В насыщенном растворе CO2 (0,034 моль/л) только часть молекул образует H2CO3, а бóльшая часть CO2 находится в гидратированном состоянии CO2ЧH2O.

Карбонаты

Карбонаты образуются при взаимодействии оксидов металлов с CO2, например, Na2O + CO2 Na2CO3.

За исключением карбонатов щелочных металлов, остальные практически нерастворимы в воде, а карбонат кальция частично растворим в угольной кислоте или растворе CO2 в воде под давлением:

CaCO3 + H2O + CO2 Ca(HCO3)2

Эти процессы происходят в подземных водах, протекающих через пласт известняка. В условиях низкого давления и испарения из грунтовых вод, содержащих Ca(HCO3)2, осаждается CaCO3. Так происходит рост сталактитов и сталагмитов в пещерах.

Окраска этих интересных геологических образований объясняется присутствием в водах примесей ионов железа, меди, марганца и хрома.

Углекислый газ реагирует с гидроксидами металлов и их растворами с образованием гидрокарбонатов, например:

NaOH + CO2 → NaHCO3

которые при нагревании разлагаются с выделением СО2:

2NaHCO3 → Na2CO3 + H2O + CO2

Карбонат натрия, или соду, производят в содовой промышленности в больших количествах преимущественно методом Сольве:

Другим методом соду получают из CO2 и NaOH

Карбонат-ион CO32– имеет плоское строение с углом O–C–O, равным 120°, и длиной СО-связи 1,31 Å (см. также ЩЕЛОЧЕЙ ПРОИЗВОДСТВО).

Галогениды углерода

Углерод непосредственно реагирует с галогенами при нагревании, образуя тетрагалогениды, но скорость реакции и выход продукта невелики. Поэтому галогениды углерода получают другими методами, например, хлорированием дисульфида углерода получают CCl4:

CS2 + 2Cl2 ® CCl4 + 2S

Тетрахлорид CCl4 – негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество).

Сам ССl4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl4 образуется и по фотохимической реакции между метаном СH4 и Сl2; при этом возможно образование продуктов неполного хлорирования метана – CHCl3, CH2Cl2 и CH3Cl.

Аналогично протекают реакции и с другими галогенами.

Реакции графита

Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl3) проникают между слоями, образуя соединения типа KC8, KC16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 Å между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (–СООН) – соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С6(COOH)6. В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.

Карбиды

Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA–IIIA подгрупп) образуют солеподобные карбиды, например Na2C2, CaC2, Mg4C3, Al4C3. В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:

Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например

CaC2 + 2H2O = C2H2 + Ca(OH)2

Образующийся по реакции ацетилен C2H2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B4C) связь между атомами ковалентная.

Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W2C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью.

Например, NbC, TaC и HfC – наиболее тугоплавкие вещества (т.пл. = 4000–4200° С), карбид диниобия Nb2C – сверхпроводник при 9,18 К, TiC и W2C по твердости близки алмазу, а твердость B4C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см. рис. 2).

Инертные карбиды образуются, если радиус переходного металла < 1,3 Å, а при большем радиусе образуются реакционноспособные карбиды типа Mn3C, Ni3C3, Fe3C.

Азотпроизводные углерода

К этой группе относится мочевина NH2CONH2 – азотное удобрение, применяемое в виде раствора. Мочевину получают из NH3 и CO2 при нагревании под давлением:

Дициан (CN)2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu2+: 2CN– ® (CN)2 + 2e.

Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме.

Цианидные комплексные ионы имеют общую формулу [M(CN)x]–0,5x, где х – координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла.

Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион [Ni(CN)4]2–, гексацианоферрат(III) [Fe(CN)6]3–, дицианоаргентат [Ag(CN)2]–:

Карбонилы

Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO)4, Fe(CO)5, Fe2(CO)9, [Fe(CO)4]3, Mo(CO)6, [Co(CO)4]2. Связь в этих соединениях аналогична связи в описанных выше цианокомплексах.

Ni(CO)4 – летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов.

Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H2Fe(CO)4 и HCo(CO)4, проявляющие кислотные свойства и реагирующие со щелочью:

H2Fe(CO)4 + NaOH → NaHFe(CO)4 + H2O

Известны также карбонилгалогениды, например Fe(CO)X2, Fe(CO)2X2, Co(CO)I2, Pt(CO)Cl2, где Х – любой галоген (см. также МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ).

Углеводороды

Известно огромное количество соединений углерода с водородом (см. ХИМИЯ ОРГАНИЧЕСКАЯ).

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/UGLEROD.html

Углерод — характеристика элемента и химические свойства

Углерод

Характеристика углерода. Свойства простых веществ и соединений

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа.

Атом углерода имеет 6 электронов: 1s22s22p2. Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх, а другой, либо 2ру, либо 2рz-орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р.

Возникает валентное состояние, имеющее конфигурацию 1s22s12px12py12pz1.

Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp3-гибридизацией, а возникающие функции – sp3-гибридными.  Образование четырех sp3-cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р—р- и одна s—s-связи.

Помимо sp3-гибридизации у атома углерода наблюдается также sp2— и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp2— гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу.

Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp2.

При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp2-гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил.

Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода.

Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества.

Углерод как восстановитель:

—    с кислородом
C0 + O2  –t°=  CO2 углекислый газпри недостатке кислорода — неполное сгорание:

2C0 + O2  –t°= 2C+2O угарный газ

—     со фтором
С + 2F2 = CF4

—    с водяным паром
C0 + H2O  –1200°= С+2O + H2 водяной газ

—  с оксидами металлов. Таким образом выплавляют металл из руды.
C0 + 2CuO  –t°=  2Cu + C+4O2

—  с кислотами – окислителями:
C0 + 2H2SO4(конц.) = С+4O2­ + 2SO2­ + 2H2O
С0 + 4HNO3(конц.) = С+4O2­ + 4NO2­ + 2H2O

—  с серой образует сероуглерод:
С + 2S2 = СS2.

  Углерод как окислитель:

—    с некоторыми металлами образует карбиды

4Al + 3C0 = Al4C3

Ca + 2C0 = CaC2-4

—     с водородом — метан (а также огромное количество органических соединений)

C0 + 2H2 = CH4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Si + C = SiC.

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита.

В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3*CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С4+ , ни С4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II)  СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение1)     В промышленности (в газогенераторах):

C + O2 = CO2

CO2 + C = 2CO

2)     В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH = H2O + CO­

H2C2O4 = CO­ + CO2­ + H2O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1)     с кислородом

2C+2O + O2 = 2C+4O2

2)     с оксидами металлов

C+2O + CuO = Сu + C+4O2

3)     с хлором (на свету)

CO + Cl2  –hn=  COCl2(фосген)

4)     реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5)     с переходными металлами образует карбонилы

Ni + 4CO  –t°= Ni(CO)4

Fe + 5CO  –t°= Fe(CO)5

Оксид углерода (IV) СO2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H2O растворяется 0,9V CO2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO3  –t°=  CaO + CO2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO3 + 2HCl = CaCl2 + H2O + CO2­

NaHCO3 + HCl = NaCl + H2O + CO2­

Химические свойства СO2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na2O + CO2 = Na2CO3

2NaOH + CO2 = Na2CO3 + H2O

NaOH + CO2 = NaHCO3

При повышенной температуре может проявлять окислительные свойства

С+4O2 + 2Mg  –t°=  2Mg+2O + C0

Качественная реакция

Помутнение известковой воды:

Ca(OH)2 + CO2  = CaCO3¯(белый осадок) + H2O

Оно исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO3 + H2O + CO2 = Сa(HCO3)2

Угольная кислота и её соли

H2CO3 — Кислота слабая, существует только в водном растворе:

CO2 + H2O ↔ H2CO3

Двухосновная:
H2CO3 ↔ H+ + HCO3— Кислые соли — бикарбонаты, гидрокарбонаты
HCO3— ↔ H+ + CO32-    Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO3  –t°=  Na2CO3 + H2O + CO2­

Na2CO3 + H2O + CO2 = 2NaHCO3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO3  –t°=  CuO + CO2­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na2CO3 + 2HCl = 2NaCl + H2O + CO2­

CO32- + 2H+ = H2O + CO2­

Карбиды

Карбид кальция:

CaO + 3 C = CaC2 + CO

CaC2 + 2 H2O = Ca(OH)2 + C2H2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC2 + 6 H2O = 2La(OH)3 + 2 C2H2 + H2.

Be2C и Al4C3 разлагаются водой с образованием метана:

Al4C3 + 12 H2O = 4 Al(OH)3 = 3 CH4.

В технике применяют карбиды титана TiC, вольфрама W2C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na2CO3 + 2 NH3 + 3 CO = 2 NaCN + 2 H2O + H2 + 2 CO2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C=O: [:C=N:]–

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H2O + 0,5 O2 = 2 K[Au(CN)2] + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды:
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан:  Hg(CN)2 = Hg + (CN)2. Растворы цианидов окисляются до цианатов:

2 KCN + O2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C=N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH4OCN = CO(NH2)2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC)2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO2 + 2 NH3 = CO(NH2)2 + H2O.  При 1300С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H2CO3 – слабая кислота (К1 =1,3·10-4; К2 =5·10-11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H2CO3 ↔ H+ + HCO3— .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO2 + H2O ↔ H2CO3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H+ + CO32-↔  HCO3—

CaCO3(тв.) ↔  Ca2+ + CO32-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na2CO3) используется в производстве стекла.

Источник: http://himege.ru/uglerod-xarakteristika-elementa-i-ximicheskie-svojstva/

Химия углерода и его соединений

Углерод

1. Положение углерода в периодической системе химических элементов
2. Электронное строение углерода
3. Физические свойства и нахождение в природе
4. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и кремнием
7.1.3.

Взаимодействие с водородом и фосфором 
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с активными металлами
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с оксидами металлов
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5.

Взаимодействие с солями

Бинарные соединения углерода — карбиды

Оксид углерода (II) 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства
3.1. Взаимодействие с кислородом
3.2. Взаимодействие с хлором
3.3. Взаимодействие с водородом
3.4. Взаимодействие с щелочами
3.5. Взаимодействие с оксидами металлов
3.6. Взаимодействие с прочими окислителями

Оксид углерода (IV) 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 
3.1. Взаимодействие с основными оксидами и основаниями 
2.3. Взаимодействие с карбонатами и гидрокарбонатами
2.4. Взаимодействие с восстановителями

Карбонаты и гидрокарбонаты 

Положение в периодической системе химических элементов

Углерод расположен в главной подгруппе IV группы  (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода 

Электронная конфигурация  углерода в основном состоянии:

+6С 1s22s22p2     1s    2s   2p 

Электронная конфигурация  углерода в возбужденном состоянии:

+6С* 1s22s12p3  1s    2s   2p 

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства 

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp3-гибридизации.

Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp2-гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.

Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n  или [–C≡C–C≡C–C≡C–]n

Фуллерен — это искусственно полученная модицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.

В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO32- — взаимодействие солей-карбонатов с сильными кислотами. Более сильные ксилоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например, карбонат кальция растворяется в соляной кислоте:

CaCO3 + 2HCl → CaCl2 + H2O + CO2

опыт взаимодействия карбоната кальция с соляной кислотой можно посмотретьздесь.

Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:

CO2 + Ca(OH)2 → CaCO3 + H2O

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:

CaCO3 + CO2 + H2O → Ca(HCO3)2

опыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотретьздесь.

Углекислый газ СО2 не поддерживает горение. Угарный газ CO горит голубым пламенем.

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

Степень окисленияТипичные соединения
+4оксид углерода (IV) CO2

угольная кислота H2CO3

карбонаты MeCO3

гидрокарбонаты MeHCO3

+2оксид углерода (II) СО

муравьиная кислота HCOOH

-4метан CH4

карбиды металлов (карбид алюминия Al4C3)

бинарные соединения с неметеллами (карбид кремния SiC)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами, и с неметаллами.

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

C  +  2F2  → CF4

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C   +   2S   → CS2

C   +   Si   → SiC

1.3. Углерод не взаимодействет с фосфором.

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

С   +   2Н2  →   СН4

1.4.С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С  + N2  →  N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

4C   +   3Al → Al4C3

2C   +   Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит, образуя оксид углерода (IV):

C  +   O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C  +   O2  →  2CO

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C0 + H2+O → C+2O + H20

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов. При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например, углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

 2ZnO + C → 2Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например, углерод взаимодействует с оксидом кальция с оразованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С    +   СаО   →  СаС2   +   СО

9С    +   2Al2O3  →   Al4C3   +   6CO

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

C +2H2SO4(конц) → CO2 + 2SO2 + 2H2O

2.4.Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

C +4HNO3(конц) → CO2 + 4NO2 + 2H2O

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями, в которых содержатся неметаллы с высокой степенью окисления.

Например, углерод восстанавливает сульфат натрия до сульфида натрия:

2C   +   Na2SO4  →   Na2S   +   CO2

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») –  это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

https://www.youtube.com/watch?v=FYELOVc2eDo

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:

Способы получения

В лаборатории угарный газ  можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН  →   CO   +  H2O

H2C2O4 → CO + CO2 + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

C + O2 → CO2

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

СН4 + Н2O → СО + 3Н2

Также возможна паровая конверсия угля:

C0 + H2+O → C+2O + H20

Угарный газ в промышленности также можно получать неполным окислением метана:

2СН4+О2 → 2СО + 4Н2

Химические свойства

Оксид углерода (II) –  несолеобразующий оксид. За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода. Пламя окрашено в синий цвет:

2СO +  O2 → 2CO2

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

CO   +   Cl2 → COCl2

3. Угарный газ взаимодействует с водородом при повышенном давлении. Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например, под давлением больше 20 атмосфер, при температуре 350°Cи под действием катализатора угарный газ реагирует с водородом с образованием метанола:

СО + 2Н2 → СН3ОН

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например, угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов.

Например, оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

3CO   +   Fe2O3   →  2Fe   +   3CO2

Оксиды меди (II) и никеля (II)  также восстанавливаются угарным газом:

СО     +   CuO   →    Cu    +   CO2

СО     +   NiO   →   Ni    +   CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например, пероксидом натрия:

CO   +   Na2O2 → Na2CO3

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

CaCO3   →   CaO   +   CO2

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

(NH4)2CO3 →  2NH3   +   2H2O   +   CO2

Гидрокарбонаты при нагревании переходят в карбонаты:

2NaHCO3  →   Na2CO3   +  CO2   +  H2O 

 Качественной реакцией на ионы СО32─  и   НСО3− является их взаимодействие с более сильными кислотами, последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2

Например, карбонат натрия взаимодействет с соляной кислотой:

Na2CO3   +  2HCl   →  2NaCl   +  CO2 ↑  +  H2O

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

 NaHCO3   +  HCl   →  NaCl   +  CO2 ↑  +  H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: CO32- + H2O = HCO3— + OH—

II ступень: HCO3— + H2O = H2CO3 + OH—

Однако  карбонаты  и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Al2(SO4)3  +  6NaHCO3  → 2Al(OH)3  +  6CO2  +  3Na2SO4

2AlBr3  +  3Na2CO3  + 3H2O →  2Al(OH)3↓  +  CO2↑ +  6NaBr

Al2(SO4)3  +  3K2CO3  +  3H2O →  2Al(OH)3↓  +  3CO2↑  +  3K2SO4

Более подробно про гидролиз можно прочитать в соответствующей статье.

Источник: https://chemege.ru/carbon/

Book for ucheba
Добавить комментарий