Виды ионизирующих излучений

51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики

Виды ионизирующих излучений

Ионизирующееизлучение (ИИ) – это излучение,взаимодействие которой со средойприводит к образованию зарядовпротивоположных знаков. Возникаетионизирующее излучение при радиоактивномраспаде, ядерных превращениях, а такжепри взаимодействии заряженных частиц,нейтронов, фотонного (электромагнитного)излучения с веществом.

ИИделятся на 2 вида:

Источник: https://studfile.net/preview/2219290/page:26/

Виды ионизирующих излучений

Виды ионизирующих излучений

Ионизирующие излучения (ИИ) — потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул.

Ионизация — превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.ьИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц.

Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаде составляет 20 тыс. км/с.

При этом α-частицы обладают наименьшей проникающей способностью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см.

Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью.

Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см.

β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10-7 м до 1 · 10-14 м; испускается при торможении быстрых электронов в веществе.

Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются.

Это излучение обладает меньшей ионизирующей способностью, чем а– и β-излучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы. Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны — элементарные частицы атомного ядра, их масса в 4 раза меньше массы α-частиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда.

Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см.

Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений:

• корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения);

• электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения. Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект.

В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов.

Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γ-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха.

Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р.

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов.

Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр).

1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад.

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм.

Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. 7.

Таблица 7

Коэффициент относительной биологической эффективности для различных видов излучений

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения.

Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений.

Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска.

Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Предыдущая6789101112131415161718192021Следующая

Дата добавления: 2015-02-16; просмотров: 9285; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/2-61493.html

Виды радиоактивных излучений

Виды ионизирующих излучений

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов.

Подобное излучение называют – ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация.

К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация – это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация – это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Альфа, бета и нейтронное излучение – это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение – это излучение энергии.

Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение – это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света.

Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения.

Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие.

Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение – это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение – это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла.

Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона.

Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения – это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение – это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией < 10 КэВ (нейтронное излучение)5
Нейтроны от 10 до 100 КэВ (нейтронное излучение)10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение)20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение)10
Нейтроны > 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше “коэффициент k” тем опаснее действие определенного вида радиции для тканей живого организма.

: Виды радиации

Источник: https://doza.pro/art/types_of_radiation

Вопрос 36. Виды ионизирующих излучений и их характеристика. Острая лучевая болезнь

Виды ионизирующих излучений

Ионизирующее излучение – излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.

Понятие ионизирующее излучение объединяет разные по своей физической природе виды излучений.

Сходство между ними состоит в том, что они обладают высокой энергией, реализуют свое биологическое действие через эффекты ионизации и последующее развитие химических реакций в биологических структурах клетки, которые могут привести к ее гибели. Ионизирующее излучение не воспринимается органами чувств человека, мы не чувствуем воздействия его на наше тело.

Важнейшими свойствами ионизирующих излучений является их проникающая способность и ионизирующее действие.

Необходимо отметить, что степень опасности того или иного вида излучения определяется его проникающей способностью.

Испускаемые частицы и электромагнитное излучение обладают энергией и импульсом и способны взаимодействовать с веществом и проникать внутрь любого объекта на определенную глубину.

Ионизирующие излучения при взаимодействии с веществами живых и неживых объектов вызывают ионизацию атомов и молекул вещества и тем самым обнаруживают химическое действие. Данное их свойство используется для обнаружения и регистрации излучений.

Ионизирующие излучения при воздействии на некоторые твердые и жидкие вещества вызывает их свечение (флуоресценцию), что также широко используется для регистрации излучений.

Кроме того, установлено, что ионизирующие излучения обладают определенным биологическим действием, например, могут вызывать изменения пространственной конфигурации белка, а следовательно нарушать его биологические функции и т.д.

Ионизирующее излучение состоит из заряженных и незаряженных частиц к которым относятся также и фотоны и подразделяется на два вида:

• корпускулярное – α , β , нейтронное;

• квантовое или электромагнитное – γ и рентгеновское.

α –излучение – это поток тяжелых положительно заряженных частиц. Они в 7300 раз тяжелее β –частиц.

По своей физической природе α –частицы представляют собой ядра атома гелия и состоят из двух протонов и двух нейтронов.

Эти частицы испускаются при радиоактивном распаде некоторых элементов с атомным номером больше 92. Данные частицы вследствие своей большой массы при взаимодействии с веществом быстро теряют свою энергию.

α –излучение обладает большим ионизирующим действием (на 1см пути пробега оно образует десятки тысяч пар ионов), но проникающая способность его незначительная. Пробег α –частиц в воздухе не превышает 10см, а при облучении человека они проникают на глубину поверхностного слоя кожи.

Таким образом, в случае внешнего облучения, для защиты от неблагоприятного воздействия α –частиц достаточно использовать обычную одежду или лист бумаги. Казалось бы они не представляют серьезной угрозы здоровью людей. Однако их высокая ионизирующая способность делает их весьма опасными при попадании источника внутрь организма человека с пищей, водой или воздухом.

В этом случае излучения оказывают высокий разрушительный эффект вследствие поглощения их внутренними органами.

β –излучение – это поток электронов или позитронов, испускаемых при радиоактивном распаде. Ионизирующее действие этих частиц ниже, чем у α –частиц, а проникающая способность значительно больше. Длина пути пробега β – частиц зависит от их энергии. В воздухе она может составлять 3 метра и более , в воде и биологической ткани – до 2 см.

Зимняя одежда защищает тело от внешнего β –излучения. Однако на открытых поверхностях кожи могут образоваться радиационные ожоги различной степени тяжести, а при попадании на хрусталик глаза может развиться лучевая катаракта.

При поступлении источников β –излучения в организм происходит внутреннее облучение, способное привести к тяжелому лучевому поражению.

Нейтронное излучение представляет собой нейтральные, не несущие электрического заряда частицы. Отсутствие у этих частиц электрического заряда приводит к тому, что они непосредственно взаимодействуют с атомными ядрами, вызывая ядерные реакции.

При оценке радиационной аварийной обстановки нейтронное излучение может играть существенную роль, поскольку обладает большой проникающей способностью.

Характер и интенсивность нейтронно-ядерных взаимодействий, проникающая способность этих частиц зависит от энергии излучения, которая колеблется в широких пределах.

Отличительной особенностью нейтронов является их способность превращать атомы стабильных элементов в их радиоактивные изотопы, что резко повышает опасность нейтронного облучения. В качестве замедлителей нейтронов используют водородсодержащие или легкие вещества: воду, углерод, парафин.

γ –излучение представляет собой коротковолновое электромагнитное излучение, испускаемое при ядерных превращениях. По своей природе оно аналогично другим видам электромагнитных излучений – световому, ультрафиолетовому, рентгеновскому. Данное излучение обладает высокой проникающей способностью и чем короче длина волны, тем больше его проникающая способность.

Пробег γ –квантов в воздухе превышает десятки и даже сотни метров. Излучение пронизывает слой свинца толщиной в несколько сантиметров и может пройти через тело человека. Основную опасность представляет как источник внешнего излучения. В качестве защиты от γ –излучения эффективно используются экраны из материала с большой атомной массой и высокой плотностью: свинца, вольфрама.

Стационарные экраны изготавливают из бетона.

Рентгеновское излучение занимает спектральную область между γ – и ультрафиолетовым излучением (длина волны 10¯9 – 10¯¹² м) и образуется при работе соответствующих приборов и аппаратов. Оно обладает такими свойствами как отражение и преломление и его энергия невелика. Высокая проникающая способность сделала возможным применение его в медицине.

Организм человека поглощает энергию ионизирующих излучений, причем от количества поглощенной энергии зависит степень лучевых повреждений.

На организм воздействует не вся энергия излучения, а только поглощенная энергия.

Необходимо учитывать, что при одинаковом количестве поглощенной энергии α –излучение в 20 раз опаснее других видов излучений с учетом коэффициента, отражающего способность излучений повреждать ткани организма.

Острая лучевая болезнь – это полисиндромное поражение организма, связанное с внешним кратковременным относительно равномерным воздействием ионизирующего излучения на весь организм или большую его часть в дозе превышающей 1 Гр при обязательном наличии признаков угнетения кроветворения и ограничении времени реализации основных патологических сдвигов сроком в 2 – 3 месяца.

Радиационные поражения в зависимости от вида и энергии испускаемых ионизирующих излучений, а также мощности дозы и распределения ее в объеме тела человека могут существенно различаться по своему патогенезу и клинической картине.

· В случае однократного облучения в дозе 0,25 Гр при обычном клиническом исследовании заметных отклонений не обнаруживается.

· При облучении в дозе 0,25-0,75 Гр могут быть отмечены нерезкие изменения в картине крови, нейрососудистой регуляции, возникающие на 5-8-й неделе от момента облучения.

· Облучение в дозе 1-10 Гр вызывает типичные формы ОЛБ с ведущим в ее патогенезе нарушением кроветворения.

· Облучение в дозе 10-20 Гр приводит к развитию кишечной формы со смертельным исходом на 10-14-й день.

· При облучении человека в дозе 20-80 Гр смерть наступает на 5-7-й день при нарастающей азотемии (токсемическая форма).

· Прямое раннее повреждение нервной системы развивается при облучении в дозе более 80 Гр. Смертельный исход при нервной (острейшей) форме возможен в первые же часы или дни после облучения.

Источник: https://cyberpedia.su/11x9e6.html

3.2.5. Виды ионизирующего излучения и основные понятия дозиметрии – Энергетика: история, настоящее и будущее

Виды ионизирующих излучений

Важным свойством радиоактивности является ионизирующее излучение. Опасность этого явления для живого организма исследователи обнаружили с самого начала открытия радиоактивности. Так, А. Беккерель и М. Кюри-Склодовская, изучавшие свойства радиоактивных элементов, получили сильнейшие ожоги кожи от излучения радия.

Ионизирующее излучение – любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков.

Различают следующие виды ионизирующих излучений: α-,β-излучение, фотонное и нейтронное излучение. Ультрафиолетовое излучение и видимую часть светового спектра не относят к ионизирующим излучениям.

Указанные выше виды излучения имеют различную проникающую способность (рис. 3.6), зависящую от носителя и энергии излучения.

Энергию излучения измеряют в электрон-вольтах (эВ). За 1 эВ принята энергия, которую приобретает электрон при перемещении в ускоряющем электрическом поле с разностью потенциалов в 1 В.

На практике чаще применяются десятичные кратные единицы: килоэлектрон-вольт (1 кэВ = 103эВ) и мегаэлектронвольт (1 МэВ = 10эВ).

Связь электрон-вольта с системной единицей энергии Дж задается выражением: 1 эВ = 1,6·10-19Дж.

Рис. 3.6. Виды радиоактивных излучений и их проникающая способность

Альфа-излучение (α-излучение) – ионизирующее излучение, представляющее собой поток относительно тяжелых частиц (ядер гелия, состоящих из двух протонов и двух нейтронов), испускаемых при ядерных превращениях. Энергия α-частиц составляет порядка нескольких мегаэлектрон-вольт и различна для разных радионуклидов. При этом некоторые радионуклиды испускают α-частицы нескольких энергий.

https://www.youtube.com/watch?v=up5HoSudH_I

Этот вид излучения, имея малую длину пробега частиц, характеризуется слабой проникающей способностью, задерживаясь даже листком бумаги. Например, пробег α-частиц с энергией 4 МэВ в воздухе составляет 2,5 см, а в биологической ткани лишь 31 мкм.

Излучение практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками.

Поэтому α-излучение не опасно до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма через органы дыхания, пищеварения или через открытые раны и ожоговые поверхности.

Степень опасности радиоактивного вещества зависит от энергии испускаемых им частиц. Поскольку энергия ионизации одного атома составляет единицы–десятки электрон-вольт, каждая α-частица способна ионизировать до 100000 молекул внутри организма.

Бета-излучение – поток β-частиц (электронов и позитронов), обладающих большей проникающей способностью в сравнении сα-излучением.

Испускаемые частицы имеют непрерывный энергетический спектр, распределяясь по энергии от нуля до определенного максимального значения, характерного для данного радионуклида.

Максимальная энергияβ-спектра различных радионуклидов лежит в интервале от нескольких кэВ до нескольких МэВ.

Пробег β-частиц в воздухе может достигать нескольких метров, а в биологической ткани нескольких сантиметров. Так, пробег электронов с энергией 4 МэВ в воздухе составляет 17,8 м, а в биологической ткани 2,6 см. Однако они легко задерживаются тонким листом металла. Как и источники α-излучения, β-активные радионуклиды более опасны при попадании внутрь организма.

Фотонное излучение включает в себя рентгеновское и гамма-излучение (γ-излучение). После радиоактивного распада атомное ядро конечного продукта часто оказывается в возбужденном состоянии.

Переход ядра из этого состояния на более низкий энергетический уровень (в нормальное состояние) происходит с испусканием гамма-квантов.

Таким образом, γ-излучение имеет внутриядерное происхождение и представляет собой довольно жесткое электромагнитное излучение с длиной волны 10-8–10-11 нм.

Энергия кванта γ-излучения Е (в эВ) связана с длиной волны соотношением

где λ выражена в нанометрах (1 нм = 10-9м).

Распространяясь со скоростью света, γ-лучи имеют высокую проникающую способность, значительно большую, чем α и β – частицы. Их может задержать лишь толстая свинцовая или бетонная плита. Чем выше энергияγ-излучения и соответственно меньше длина его волны, тем выше проникающая способность. Обычно энергия гамма-квантов лежит в диапазоне от нескольких кэВ до нескольких МэВ.

В отличие от γ-излучения рентгеновское имеет атомное происхождение, Оно образуется в возбужденных атомах при переходе электронов с удаленных орбит на более близкую к ядру орбиту или возникает при торможении заряженных частиц в веществе.

Соответственно первое имеет дискретный энергетический спектр и называется характеристическим, второе – непрерывный спектр и называется тормозным. Диапазон энергий рентгеновского излучения – от сотен электрон-вольт до десятков килоэлектрон-вольт.

Несмотря на различное происхождение этих излучений, природа их одинакова, и поэтому рентгеновское и γ–излучение называют фотонным излучением.

Под действием фотонного излучения происходит облучение всего организма. Оно является основным поражающим фактором при воздействии на организм излучения от внешних источников.

Нейтронное излучение возникает при делении тяжелых ядер и в других ядерных реакциях.

Источниками нейтронного излучения на АЭС являются ядерные реакторы, плотность потока нейтронов в которых составляет 1010–1014 нейтронов/(см·с); изотопные источники, содержащие естественные или искусственные радионуклиды, смешанные с веществом, испускающим нейтроны под влиянием бомбардировки егоα-частицами или γ-квантами. Такие источники применяют для градуировки контрольно-измерительной аппаратуры. Они дают потоки порядка 107–108 нейтронов/с.

В зависимости от энергии нейтроны подразделяют на следующие типы: медленные, или тепловые (со средней энергией∼0,025 эВ); резонансные (с энергией до 0,5 кэВ); промежуточные (с энергией от 0,5 кэВ до 0,5 МэВ); быстрые (с энергией от 0,5 до 20 МэВ); сверхбыстрые (с энергией свыше 20 МэВ).

При взаимодействии нейтронов с веществом наблюдаются два типа процессов: рассеяние нейтронов и ядерные реакции, в том числе вынужденное деление тяжелых ядер.

Именно с последним видом взаимодействий связано возникновение цепной реакции, происходящей при атомном взрыве (неуправляемая цепная реакция) и в ядерных реакторах (управляемая цепная реакция) и сопровождающейся выделением огромных количеств энергии.

Проникающая способность нейтронного излучения сравнима с γ-излучением. Тепловые нейтроны эффективно поглощаются материалами, содержащими бор, графит, свинец, литий, гадолиний и некоторые другие вещества; быстрые нейтроны эффективно замедляются парафином, водой, бетоном и др.

Основные понятия дозиметрии. Имея разную проникающую способность, ионизирующие излучения различных типов оказывают различное воздействие на ткани живого организма. При этом повреждений, вызываемых излучением, будет тем больше, чем большая энергия воздействует на биологический объект. Количество энергии, переданное организму при ионизирующем воздействии, называется дозой.

Физической основой дозы ионизирующего излучения является преобразование энергии излучения в процессе его взаимодействия с атомами или их ядрами, электронами и молекулами облучаемой среды, в результате которого часть этой энергии поглощается веществом. Поглощенная энергия является первопричиной процессов, приводящих к наблюдаемым радиационно-индуцированным эффектам, и потому дозиметрические величины оказываются связанными с поглощенной энергией излучения.

Дозу облучения можно получить от любого радионуклида или от их смеси независимо от того, находятся они вне организма или внутри него в результате попадания с пищей, водой или воздухом. Дозы рассчитываются по-разному с учетом того, каков размер облученного участка и где он расположен, один ли человек подвергся облучению или группа людей и в течение какого времени это происходило.

Количество энергии, поглощенное единицей массы облучаемого организма, называется поглощенной дозой и измеряется в системе СИ в греях (Гр). Размерность грея – джоуль, деленный на килограмм массы (Дж/кг).

Однако величина поглощенной дозы не учитывает того, что при одинаковой поглощенной дозе α-излучение и нейтронное излучение гораздо опаснее, чем β-излучение илиγ-излучение.

Поэтому для более точной оценки степени поражения организма величину поглощенной дозы надо увеличить на некоторый коэффициент, отражающий способность излучения данного вида повреждать биологические объекты. Такой коэффициент называется радиационным взвешивающим фактором.

Его величина для β и γ-излучений принимается равной 1, для α-излучения – 20, для нейтронного излучения изменяется в диапазоне 5–20 в зависимости от энергии нейтронов.

Пересчитанную таким образом дозу называют эквивалентной дозой, которая в системе СИ измеряется в зивертах (Зв). Размерность зиверта такая же, как у грея – Дж/кг.

Доза, полученная за единицу времени, классифицируется в системе СИ как мощность дозы и имеет размерность Гр/с или Зв/с.

В системе СИ допустимо применение несистемных единиц измерения времени, таких как час, сутки, год, поэтому при расчете доз применяют такие размерности, как Зв/ч, Зв/сут, Зв/год.

До сих пор в геофизике, геологии и частично в радиоэкологии применяется несистемная единица дозы – рентген. Эта величина была введена в употребление еще на заре атомной эры (в 1928 г.) и использовалась для измерения величины экспозиционной дозы.

Рентген равен такой дозеγ-излучения, которая создает в одном кубическом сантиметре сухого воздуха общий заряд ионов, равный одной единице электрического заряда.

При измерении в воздухе экспозиционной дозыγ-излучения используются соотношения между рентгеном и греем: 1 Р = 8,77 мДж/кг или 8,77 мГр. Соответственно 1 Гр = 114 Р.

В дозиметрии сохранилась еще одна внесистемная единица – рад, равная поглощенной дозе облучения, при которой 1 кг облучаемого вещества поглощает энергию, равную 0,01 Дж. Соответственно I рад = 100 эрг/г = 0,01 Гр. В настоящее время эта единица выходит из употребления.

Рис. 3.7. Коэффициенты радиационного риска для разных тканей (органов) человека при равномерном облучении всего тела

При расчете доз, получаемых организмом, следует учитывать, что одни части тела (органы, ткани) более чувствительны к облучению, чем другие. В частности, при одинаковой эквивалентной дозе поражение легких более вероятно, чем, например, щитовидной железы. Междуна

родной комиссией по радиационной защите (МКРЗ) были разработаны пересчетные коэффициенты, которые рекомендуется использовать при оценке дозы облучения различных органов и биологических тканей человека (рис. 3.7).

После умножения величины эквивалентной дозы для данного органа на соответствующий коэффициент и суммирования ее по всем органам и тканям получают эффективную эквивалентную дозу, отражающую суммарный эффект от облучения на организм. Эта доза также измеряется в зивертах. Описанное понятие дозы характеризует лишь индивидуально получаемые дозы.

При необходимости изучения эффектов действия радиации на группу людей используется понятие коллективной эффективной эквивалентной дозы, которая равна сумме индивидуальных эффективных эквивалентных доз и измеряется в человеко-зивертах (чел.-Зв).

Поскольку многие радионуклиды распадаются очень медленно и будут действовать на население в отдаленном будущем, коллективную эффективную эквивалентную дозу от подобных источников будут получать еще многие поколения людей, живущих на планете.

Для оценки указанной дозы введено понятие ожидаемой (полной) коллективной эффективной эквивалентной дозы, которая позволяет прогнозировать поражение группы людей от действия постоянных источников радиации.

Для наглядности описанная выше система понятий проиллюстрирована на рис. 3.8.

Рис. 3.8. Обобщенное представление системы понятий о дозах радиационного облучения населения

Источник: http://energetika.in.ua/ru/books/book-5/part-3/section-3/3-2/3-2-5

Что такое ионизирующее излучение?

Виды ионизирующих излучений

Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества.

При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы.

Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.

Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей, представляющих собой одну из составляющих естественного ионизирующего излучения.

Результат действия ионизирующего излучения называют облучением. Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения.

Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.

В быту и в некоторых отраслях науки, техники и медицины ионизирующее излучение принято называть просто радиацией. Строго говоря, это не совсем верно, т.к.

сам по себе термин «радиация» охватывает все виды излучения, включая самые длинные радиоволны и потоки частиц любой сколь угодно малой энергии, а также волны деформации в веществе, например, звуковые волны.

Тем не менее, употребление слова «радиация» применительно к ионизирующему излучению настолько вошло в привычку, что в науке прижились термины, сформированные на его основе, такие, как, например, радиология (наука о медицинских применениях ионизирующего излучения), радиационная защита (наука о методах снижения доз облучения до приемлемых уровней), естественный радиационный фон, и т.п.

Виды ионизирующих излучений

Ионизирующее излучение (ИИ) — поток микрочастиц или электромагнитные поля, способные ионизировать вещество. В жизни, под ионизирующим излучением понимают проникающую радиацию – поток гамма-лучей и частиц (альфа, бета, нейтронов и др.).

Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно.

При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти.

Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.

Чаще всего ионизирующие излучения делят на:

  • корпускулярное ионизирующее излучение и
  • электромагнитное (фотонное) ионизирующее излучение.

Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:

  • заряженные частицы, в том числе,
  • легкие заряженные частицы (электроны и позитроны);
  • тяжелые заряженные частицы (мюоны, пионы и другие мезоны, протоны, заряженные гипероны, дейтроны, альфа-частицы, и другие ионы);
  • электрически нейтральные частицы (нейтрино, нейтральные пионы и другие мезоны, нейтроны, нейтральные гипероны).

Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага  полностью защищают организм от внешних потоков альфа-частиц.

*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.

Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность.

Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм.

А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.

Гамма-излучение – сопутствующее ядерным превращениям электромагнитное излучение. Сегодня  к гамма-излучению относят также жесткое рентгеновское излучение. Обладает очень высокой проникающей способностью.

Оградить себя от гамма-излучения практически невозможно, однако можно ослабить его до приемлемого уровня.

Защитные средства, обладающие экранирующим действием от такого рода радиации, выполняются из свинца, чугуна, стали, вольфрама и других металлов с высоким порядковым номером.

*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.

Нейтронное излучение – поток нейтронов – тяжелых частиц, входящих в состав ядра. Для защиты от этого излучения можно использовать убежища, противорадиационные укрытия, дооборудованные подвалы и погреба. Потоки нейтронов, как и потоки гамма-излучения невозможно полностью экранировать.

Быстрые нейтроны сначала надо замедлить в воде, полиэтилене, парафине, можно в бетоне, а затем их необходимо поглотить, например, в кадмиевой фольге, за которой должен стоять достаточный слой свинца, чтобы экранировать возникающее при захвате нейтронов ядрами кадмия высокоэнергетическое гамма-излучение.

Поэтому защита от нейтронов, как правило, делается комбинированной.

Источник: https://ru.polimaster.com/resources/radiation-basics/types-of-ionizing-radiation

Ионизирующее излучение, последствия для здоровья и защитные меры

Виды ионизирующих излучений

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа).

Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения.

Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду.

Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов.

Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Люди каждый день подвергаются воздействию естественного и искусственного излучения.

Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе.

Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.

Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте.

В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения.

Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.

На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.

Воздействие излучения может быть внутренним или внешним и может происходить различными путями.

Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.

Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.

Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием).

Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.

Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).

Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.

Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.

Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.

Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.

На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население.

  Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).

Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. 

Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей. 

Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год. 

Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей.

Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения.

Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.

Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв.

В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).

Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности.

Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует.

Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.

ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.

В соответствии с основной функцией, касающейся “установления норм и стандартов, содействия в их соблюдении и соответствующего контроля” ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.

Источник: https://www.who.int/ru/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protective-measures

Book for ucheba
Добавить комментарий