ВОЗРАСТАНИЕ АГРЕССИВНОСТИ СРЕДЫ

Степень агрессивного воздействия сред

ВОЗРАСТАНИЕ АГРЕССИВНОСТИ СРЕДЫ

9.1 Степень агрессивного воздействия сред.

9.1.1 Степени агрессивного воздействия сред на металлические конструкции приведены:

  • газообразных сред – в таблице X.1;
  • твердых сред – в таблице Х.2;
  • жидких неорганических сред – в таблице Х.3;
  • жидких органических сред – в таблице Х.4;
  • подземных вод и грунтов на конструкции из углеродистой стали – в таблице Х.5.

9.1.2. При определении по таблицам X.1 и Х.

2 степени агрессивного воздействия среды на части конструкций, находящиеся внутри отапливаемых зданий, следует учитывать влажностный режим помещений, а для частей конструкций, находящихся внутри неотапливаемых зданий, под навесами и на открытом воздухе, – зону влажности. Загрязнение воздуха, в том числе внутри зданий, солями, пылью или аэрозолями следует учитывать, если их средняя годовая концентрация не ниже 0,3 мг/(м·сут).

9.2 Требования к материалам и конструкциям

9.2.

1 В зданиях для производств со среднеагрессивными и сильноагрессивными средами шаг стальных колонн и стропильных ферм должен быть 12 м и более. Стальные конструкции зданий для производств с сильноагрессивными средами должны проектироваться со сплошными стенками.

9.2.

2 Стальные конструкции зданий и сооружений для производств с агрессивными средами с элементами из труб или из замкнутого прямоугольного профиля должны проектироваться с герметичными швами и заваркой торцов.

При этом защиту от коррозии внутренних поверхностей допускается не производить.

Применение элементов замкнутого сечения в слабоагрессивных средах для конструкций на открытом воздухе допускается при условии обеспечения отвода воды с участков ее возможного скопления.

9.2.

3 Конструкции зданий и сооружений в целом, элементы и узлы соединения конструкций должны иметь свободный доступ для осмотров и возобновления защитных покрытий. При отсутствии возможности обеспечения этих требований конструкции первоначально должны быть защищены от коррозии на весь период эксплуатации.

9.2.

4 Применение металлических конструкций с тавровыми сечениями, из двух уголков, крестовыми сечениями из четырех уголков с незамкнутыми прямоугольными сечениями или двутавровыми сечениями из швеллеров и гнутого профиля в зданиях и сооружениях со среднеагрессивными и сильноагрессивными средами не допускается.

9.2.

5 Несущие конструкции одноэтажных отапливаемых зданий с ограждающими конструкциями из панелей, включающих профилированные листы, следует проектировать как для неагрессивных и слабоагрессивных сред.

Такие же здания со среднеагрессивными средами допускается проектировать при условии защиты несущих конструкций от коррозии в соответствии с позициями аб и в таблицы Ц.6.

Не допускается проектировать здания с панелями, включающими профилированные листы, для производств с сильноагрессивными средами.

9.2.

6 Не допускается проектировать стальных конструкций:зданий и сооружений со средами средней и сильной степени агрессивного воздействия, а также зданий и сооружений, находящихся в слабоагрессивных средах, содержащих сернистый ангидрид или сероводород по группе газов В из стали марок 09Г2 и14Г2;

зданий и сооружений со среднеагрессивными и сильноагрессивными средами, содержащими сернистый ангидрид или сероводород по группам газов В, С или D, из стали марки 18Г2Афпс.

9.2.

7 Стальные конструкции зданий и сооружений со слабоагрессивными средами, содержащими сернистый ангидрид, сероводород или хлороводород по группам газов В и С, со среднеагрессивными и сильноагрессивными средами, а также сооружений при воздействии среднеагрессивных и сильноагрессивных жидких сред или грунтов допускается проектировать из стали марок 12ГН2МФАЮ, 12Г2СМФ и 14ГСМФР с пределом текучести не менее 588 МПа и стали с более высокой прочностью только после проведения исследований склонности стали и сварных соединений к коррозии под напряжением в данной среде в соответствии с требованиями ГОСТ 9.903.

9.2.

8 Не допускается предусматривать применение алюминия, оцинкованной стали или металлических защитных покрытий при проектировании конструкций зданий и сооружений, на которые воздействуют жидкие среды или грунты с рН до 3 и свыше 11, растворы солей меди, ртути, олова, никеля, свинца и других тяжелых металлов, твердая щелочь, кальцинированная сода или другие хорошо растворимые гигроскопичные соли со щелочной реакцией, способные откладываться на конструкциях в виде пыли, если без учета воздействия пыли степень агрессивного воздействия среды соответствует среднеагрессивной или сильноагрессивной.

Примечание – При возможном попадании вышеперечисленных агрессивных сред, а также строительных растворов и незатвердевшего бетона на поверхность алюминиевых конструкций в проекте должно быть указано на необходимость их удаления с поверхности конструкций.

9.2.

9 Не допускается проектировать из алюминия конструкции зданий и сооружений со среднеагрессивными и сильноагрессивными средами при концентрации хлора, хлористого водорода и фтористого водорода по группам газов С и D. Сплавы алюминия марок 1915, 1925, 1915Т, 1925Т, 1935Т не допускаются к применению для конструкций, находящихся в неорганических жидких средах.

9.2.

10 При проектировании морских нефтегазопромысловых гидротехнических сооружений, за исключением глубоководных оснований стационарных платформ, не допускается:

а) размещение элементов связей (распорок, раскосов, сварных швов) в зоне периодического смачивания;

б) присоединение связей к опорам хомутами;

в) размещение пролетных строений в зоне периодического смачивания.Эти ограничения для конструкций глубоководных оснований стационарных платформ распространяются:на сооружения в Каспийском море – на высоту не менее 1 м над урезом воды;

на сооружения в других акваториях – на высоту приливно-отливных зон.

9.2.

11 Не допускается проектировать стальные конструкции с соединениями на заклепках из стали марки 09Г2 для зданий и сооружений в слабоагрессивных средах, содержащих сернистый ангидрид или сероводород по группе газов В, а также зданий и сооружений со среднеагрессивными и сильноагрессивными средами.

Источник: http://amadon.ru/stepen-agressivnogo-vozdeystviya-sred

Возрастание агрессивности среды

ВОЗРАСТАНИЕ АГРЕССИВНОСТИ СРЕДЫ

1. Загрязнение воздуха, вод и почвы

2.Рост патогенности микроорганизмов

3. Изменение генофонда.

Среди важнейших факторов повышения агрессивности среды по отношению к человеку следует прежде всего отметить загряз­нение атмосферного воздуха и вод, а также возрастание патогенности болезнетворных организмов.

Загрязнение воздуха. В последние годы отмечается увеличение загрязнения воздуха, связанное с расширением промышленных зон, с усиленной технизацией и моторизацией нашей жизни.

Вредное воздействие веществ, попадающих в воздух, может усиливаться их взаимными реакциями между собой, особыми метеоусловиями.

В районах, где отмечается высокая плотность населения и одновре­менно скопление заводов и фабрик, загрязнение воздуха нараста­ет особенно быстро. В дни, когда из-за погодных условий цирку­ляция воздуха ограничена, здесь возникает смог.

Смог – видимое простым глазом загрязнение атмосферы над жилыми или про­мышленными кварталами. Он образуется в результате накопления дымов от бытовых котельных, промышленных предприятий и вы­хлопных газов автомобилей и двигателей различного рода.

Особую опасность для человека представляют выхлопные газы автомобилей, в которых содержатся окислы свинца. Даже сравни­тельно небольшая концентрация свинца в выхлопных газах может оказаться вредной для здоровья, так как металл из воздуха через легкие и желудочно-кишечный тракт проникает в организм быст­рее, чем может выводиться из него.

Последствия – нарушение синтеза гемоглобина, мышечная слабость вплоть до паралича, нарушение структуры и функций печени и мозга. Кислотообразующие осадки, в свою очередь, увеличивают аг­рессивность поверхностных вод, в которых увеличивается содержа­ние фтора и металлов, в том числе стронция.

В выбросах, стоках и твердых отходах промышленных городов содержатся тысячи тонн свинца, цинка, меди, хрома, никеля, кадмия, молибдена, ванадия и других металлов. Значительная часть загрязнений концентриру­ется в почве и проникает в грунтовые воды, откуда попадает в ко­лодцы и водопровод.

Загрязнение воздуха кислотообразующими выбросами вызывает респираторные заболевания, астматические явления, разрушает легочную ткань.

Загрязнение вод. Вода – вещество, жизненно необходимое для че­ловека, может стать для него чрезвычайно опасной. В жилых квар­талах, где нет водопровода, воду часто запасают в больших баках и бассейнах.

В этих сооружениях нередко заводятся бактерии, пе­реносчики опасных болезней, в них могут случайно попасть хи­мические вещества, например удобрения. Но и там, где имеется центральное водоснабжение, не обходится без проблем.

Зачастую качество воды настолько низкое, что ее употребление может стать причиной развития ряда заболеваний.

Основными факторами, вызывающими загрязнение питьевой воды, являются:

1) большое количество промышленных сбросов;

2) отравление воды веществами, загрязняющими воздух и вымываемыми из него дождевой водой, в итоге стекающей в водоемы;

3) просачивание в водоемы вредных веществ, употребляемых в сельском хозяйстве;

4) недостаточное развитие канализационной сети.

Воде, без которой невозможна никакая жизнь, в свою очередь, требуется жизнь. Безжизненная вода – смерть для всех нас. В водоемах живут организмы, которым нужна определенная температура и определенный состав воды.

Поступление сточных вод в водоемы приводит к повышению их эвтрофированности (накоплению питательных веществ), что может полностью лишить воду кислорода.

В результате гибнут живые организмы, качество воды резко ухудшается.

Бытовые стоки и отходы пищевой промышленности особенно вредны из-за того, что на окисление этих веществ в водоеме уходит очень много кислорода.

Промышленные предприятия отрав­ляют водоемы сточными водами, которые содержат большое ко­личество ядов, в том числе тяжелые металлы, цианиды. В определенной степени водоем, принимающий стоки, может сам очищаться.

Органические загрязнения захватываются бактериями и другими микроорганизмами. Фактор, лимитирующий разложение сточных вод, – количество содержащегося кислорода.

Уже сейчас половину необходимой нам воды добывают через артезианские скважины из глубинных слоев земли.

Однако и эта вода далека от идеальных требований, поскольку в ней содержит­ся повышенное количество минеральных солей, не всегда полез­ных для организма.

Вода же из рек, озер и водохранилищ нужда­ется во все более дорогостоящей очистке в специальных установках. В идеале вода должна быть прохладной, чистой, бесцветной, не иметь запаха и неприятного привкуса.

Рост патогенности микроорганизмов. Применение все более совершенных и мощных средств борьбы с болезнетворными микроорганизмами часто приводит к выработке у последних со временем резистентности (устойчивости) к соответствующим препаратам. Становясь неуязвимыми, микроорганизмы оказываются способными вызывать тяжелейшие расстройства здоровья человека.

Эффект «привыкания» микроорганизмов к воздействию фарма­цевтических препаратов может приводить к вспышкам численно­сти возбудителей тех или иных заболеваний и, следовательно, к развитию эпидемий.

В целях профилактики негативных последствий описанного выше явления ученые-фармацевты постоянно ра­ботают над созданием все более эффективных препаратов, спо­собных не только уничтожать опасные для человека микроорга­низмы, но и также подавлять их адаптивные способности.

Помимо роста патогенности микроорганизмов другим фактором ухудшения эпидемиологической ситуации может выступать рост численности переносчиков возбудителей заболеваний человека. Ими могут быть некоторые животные (собаки, крысы, белки и др.), а также насекомые (комары, вши и др.).

Для борьбы с ними используются специальные препараты, действие которых не всегда приводит к однозначным результатам.

Показателен в этом смысле пример знаменитого ДДТ (дихлордифенилэтана) -«чудо-оружия», призванного, как считалось, спасти человечество не только от многих переносчиков возбудителей опасных болезней, но и также от большинства вредителей сельскохозяйственных культур.

На протяжении 60-х годов ДДТ в различных странах были обработаны огромные площади сельскохозяйственных угодий, а также места скопления переносчиков болезнетворных микроорганизмов. На первых порах эффективность препарата не вызывала ни малейшего сомнения, однако уже через несколько лет его использования стали появляться данные о «привыкании» к нему некоторых видов вредителей и переносчиков. Приспособившиеся животные и насекомые становились настолько устойчивыми к воздействию отравляющих веществ, что чрезвычайно трудно было найти новые препараты, позволяющие вести с ними эффективную борьбу. В этих условиях резко участились случаи вспышек эпидемий заболеваний, вызванных микроорганизмами, передаваемых живыми переносчиками – животными или насекомыми.

ИЗМЕНЕНИЕ ГЕНОФОНДА

Изменение среды обитания, происходящее в результате деятель­ности человека, оказывает на человеческие популяции воздействие, которое по большей части вредоносно, приводит к росту за­болеваемости и сокращению продолжительности жизни.

Однако в развитых странах средняя продолжительность жизни неуклонно – примерно на 2,5 года за десятилетие – приближается к своему биологическому пределу (95 лет), в рамках которого конкретная причина смерти не имеет принципиального значения.

Воздействия, казалось бы и не ведущие к преждевременной смерти, тем не менее нередко снижают качество жизни, но более глубокая проблема заключается в незаметном постепенном изменении генофонда, которое приобретает глобальные масштабы.

Генофонд обычно определяют как совокупность генов, имеющихся у особей данной популяции, группы популяций или вида, в пределах которых они характеризуются определенной частотой встречаемости. О воздействии на генофонд чаще всего говорят в связи с радиационным загрязнением, хотя это далеко не единственный фактор, влияющий на генофонд.

Существует большой разрыв между обиходными и научными представлениями о влиянии радиации на генофонд. Например, нередко говорят об утрате генофонда, хотя совершенно ясно, что гено­фонд человеческого вида может быть утрачен лишь при условии практически поголовного уничтожения людей.

Утрата генов или их вариантов в обозримых масштабах времени вероятна лишь в отношении очень редких вариантов. Во всяком случае, не менее возможно появление новых вариантов гена, изменение генных частот и соответственно частот гетерозиготных и гомозиготных генотипов. Все эти события укладываются в представление об изменении генофонда (рис. 4).

Рис. 4. Изменение генофонда

Сторонники евгенических программ считают возможным избавиться от нежелательных ге­нов путем физического уничтожения или исключения их носите­лей из процесса воспроизводства. Однако действие гена зависит от его окружения, взаимодействия с другими генами.

На уровне личности дефекты нередко компенсируются развитием особых способностей (Гомер был слепым, Эзоп – уродливым, Байрон и Пастернак – хромыми).

А доступные сегодня методы генной тера­пии открывают возможность исправления врожденных дефектов без вмешательства в генофонд.

Стремление большинства людей сохранить генофонд таким, каким его создала природа, имеет под собой вполне естественные основания. Исторически генофонд сложился в результате дли­тельной эволюции и обеспечил приспособление человеческих по­пуляций к широкому спектру природных условий.

Генетическое разнообразие людей на популяционном и индивидуальном уров­нях иногда носит очевидный адаптивный характер (например, темный цвет кожи в низких широтах, связанный с устойчивостью к ультрафиолетовому излучению), в других же случаях нейтраль­но по отношению к факторам среды.

Независимо от этого генетическое разнообразие предопределило многообразие и динамич­ность развития человеческой культуры.

Высшее достижение этой культуры – гуманистический принцип равноценности всех людей – в переводе на биологический язык означает сохранение генофон­да, не подлежащего искусственному отбору.

Вместе с тем продолжается действие и естественных факторов изменения генофонда – мутации, дрейф генов и естественный от­бор. Загрязнение среды влияет на каждый из них. Хотя эти факторы действуют совместно, в аналитических целях имеет смысл рас­смотреть их по отдельности.

Факторы мутагенеза. К ним из физических воздействий кроме ионизирующего излучения, возможно, относятся электромагнит­ные поля.

Установлено, например, повышение заболеваемости лейкемией у лиц, проживающих длительное время вблизи высоко­вольтных линий электропередачи.

Из сотен тысяч разнообразных химических соединений, поступающих в среду в виде бытовых и производственных загрязнений, около 20% генотоксичны.

Мутационные изменения снижают жизнеспособность организма в 1-2-кратном соотношении со скоростью гаметного мутагенеза.

Наряду с прямым канцерогенным эффектом – мутациями, нару­шающими взаимодействие клеточных клонов в процессе их роста и трансформации, происходит нарушение контрольных функций гормональной и иммунной систем, на фоне которого возрастает риск злокачественных новообразований как хемотоксичной, так и вирусной этиологии.

Мутагенез, сопровождающий встраивание вирусной частицы в клеточный геном, также может возрастать вследствие иммунной недостаточности организма, появления но­вых штаммов вирусов или того и другого.

Дрейф генов. В прошлом дрейф генов был связан с резкими ко­лебаниями численности локальных популяций, истребляемых вой­нами и эпидемиями. Выжившие основатели новой популяции пере­давали ей черты своей генетической индивидуальности.

Утрачен­ная часть генетического разнообразия восстанавливалась за счет повторных мутаций и потока генов, но определенные отличия могли сохраняться длительное время.

Сегодня рост численности и более подвижный образ жизни предохраняют генофонд от дрейфа генов, разве что за исключением малочисленных популяций на океанических островах, в горных районах или тропических лесах.

Естественный отбор. Внимание общественности и экспертов в первую очередь привлекают генотоксичные факторы прямого действия и связанные с ними заболевания, тогда как естественный отбор – в долгосрочном плане гораздо более мощный фактор из­менения генофонда – остается в тени.

Между тем любое воздейст­вие на среду хотя бы в небольшой степени изменяет направлен­ность отбора, создавая давление на популяцию и сдвигая частоты соответствующих генотипов.

Ген может долго удерживаться в по­пуляции, несмотря на негативный отбор (который недостаточно эффективен при низких частотах), но угроза обеднения генофонда со временем становится все более реальной.

Охрана среды обитания и системы здравоохранения – факторы, по существу, противостоящие естественному отбору в человече­ских популяциях. Тем не менее отбор действует в особенности на пренатальном уровне (например, в виде ранних самопроизволь­ных абортов, которые могут остаться незамеченными).

Любое заболевание снижает шансы на успешную карьеру, создание семьи и полноценный генетический вклад в следующее поколение.

По­скольку люди неравноценны в отношении устойчивости к воздей­ствиям специфического и общего характера, то отбор работает в пользу более устойчивых, невзирая на их личностные качества, и тем более активно, чем больше загрязнение среды. Эти процессы не только сокращают разнообразие людей (3 тыс.

лет назад свет­локудрые ахейцы сражались с темноволосыми малоазийскими племенами; теперь настоящие блондины редки даже среди скан­динавов, не говоря уже о греках), но и вымывают из популяции редкие гены, способствующие развитию социально ценных свойств, если они не сцеплены с генетическими факторами устой­чивости к загрязнениям.

Источник: https://studopedia.su/7_46795_vozrastanie-agressivnosti-sredi.html

Book for ucheba
Добавить комментарий