Вычисление вероятности.

Содержание
  1. Как решать задачи на вероятность?
  2. Вероятность. Что это?
  3. Алгоритм решения задач на вероятность
  4. Как решать задачи: классическая вероятность
  5. Некогда решать? Найди решенную задачу
  6. Как решать задачи: формула Бернулли
  7. И это все? конечно, нет
  8. Полезные статьи по теории вероятностей
  9. Теория вероятностей
  10. Полная вероятность
  11. Правило умножения вероятностей независимых событий
  12. Правило сложения вероятностей несовместных событий
  13. Тренировка
  14. Теория вероятностей. средний уровень
  15. Независимые события и правило умножения
  16. Несовместные события и правило сложения
  17. Задачи смешанного типа
  18. Теория вероятностей. коротко о главном
  19. ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!
  20. Вы сможете сначала оценить насколько они вам подходят и потом принять взвешенное решение. 
  21. Что такое вероятность и как ее посчитать
  22. Теперь, про более реальный эксперимент
  23. Теория вероятности формулы и примеры решения задач
  24. Зачем нужна теория вероятности
  25. Основные понятия теории вероятности
  26. Пример задачи из ЕГЭ по математике по определению вероятности
  27. Решение
  28. Независимые, противоположные и произвольные события
  29. Теоремы сложения и умножения вероятностей, формулы
  30. Примеры решения задач из ЕГЭ по математике на определение вероятности
  31. Базовая формула для вычисления вероятности
  32. Вероятность, теория вероятности
  33. Экспериментальная и теоретическая вероятность
  34. Вычисление экспериментальных вероятностей
  35. Принцип P (экспериментальный)
  36. Теоретическая вероятность
  37. Принцип P (Теоретический)
  38. Свойства вероятности

Как решать задачи на вероятность?

Вычисление вероятности.

Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей – от географов до математиков. Что же это за предмет такой, и как к нему подойти?

Спасибо за ваши закладки и рекомендации

Вероятность. Что это?

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Таким образом, мы сталкиваемся с основным понятием случайного события – явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах.

Вероятность – это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 – событие практически невозможно, 1 – событие практически достоверно, 0,5 (или “50 на 50”) – с равной вероятностью событие произойдет или нет.

Подробно решим ваши задачи по теории вероятностей

Алгоритм решения задач на вероятность

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.

А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

  • Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
  • Найти основной вопрос задачи вроде “вычислить вероятность того, что …” и вот это многоточие записать в виде события, вероятность которого надо найти.
  • Событие записано. Теперь надо понять, к какой “схеме” теории вероятностей относится задача, чтобы правильно выбрать формулы для решения. Ответьте на тестовые вопросы типа:
    • происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
    • если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
    • событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).

    Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.

  • Выбрана формула (или несколько) для решения. Записываем все данные задачи и подставляем в данную формулу.
  • Вуаля, вероятность найдена.

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

  • В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
  • Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
  • Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
  • Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов – число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_{30}3=\frac{30!}{3!27!}=\frac{28\cdot 29 \cdot 30}{1\cdot 2 \cdot 3}=4060.$$ Найдем число способов вызвать только студентов, получивших “2”. Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_{5}3=\frac{5!}{3!2!}=\frac{4 \cdot 5}{1\cdot 2}=10.$$
  • Получаем вероятность: $$P(X)=\frac{m}{n}=\frac{10}{4060}=0,002.$$ Задача решена.

Еще: Решенные задачи на классическое определение вероятности.

Некогда решать? Найди решенную задачу

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

  • В задаче идет речь о серии одинаковых испытаний – бросаний монеты.
  • Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
  • Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз: $$ P_{n}(k)=C_nk \cdot pk \cdot (1-p){n-k}.$$
  • Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
  • Подставляем и получаем вероятность: $$ P(X)=P_{8}(5)=C_85 \cdot 0,55 \cdot (1-0,5){8-5}=\frac{8!}{5!3!}\cdot 0,58=\frac{6\cdot 7 \cdot 8}{1\cdot 2 \cdot 3} \cdot 0,58= 0,219.$$Задача решена.

Еще примеры: Решенные задачи на формулу Бернулли

И это все? конечно, нет

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Лучшее спасибо – порекомендовать эту страницу

Полезные статьи по теории вероятностей

О решении теории вероятностей

Источник: https://www.MatBuro.ru/tvart_sub.php?p=art_tv

Теория вероятностей

Вычисление вероятности.



Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое вероятность?

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность – это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой   двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры  , а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей  , нужная дверь  . Вероятность угадать, позвонив в первую дверь:  . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив   раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком – когда не совпадает.

Как видишь всего возможно   вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего  . То есть   раза из   ты угадаешь, позвонив в дверь   раз, т.е.  .

Это и есть вероятность – отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение – это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за   – количество благоприятных исходов, а за   – общее количество исходов.
 

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на  :
 

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие – это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что  , то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть   варианта,   из которых – благоприятны. То есть вероятность равна  .

А почему не  ?

Рассмотренная нами ситуация – пример зависимых событий. Первое событие – это первый звонок в дверь, второе событие – это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно,  .

Но если есть зависимые события, то должны быть и независимые? Верно, бывают.

Два события независимы, если при наступлении одного вероятность наступления другого не изменяется.

Хрестоматийный пример – бросание монетки.

  1. Бросаем монетку   раз. Какова вероятность того, что выпадет, например, орел? Правильно –  , ведь вариантов всего   (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только  .
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же  . Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на   раз будет все также  . Вариантов всегда  , а благоприятных –  .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится   раз (  раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают   раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет – независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта  . Из них нас устраивает только  . То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на  .

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из   конфет –   с орехами,   с коньяком,   с вишней,   с карамелью и   с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов?  .

То есть, взяв одну конфету, она будет одной из  , имеющихся в коробке.

А сколько благоприятных исходов?

 , потому что в коробке только   конфет с орехами.
 

Ответ:

Пример 3.

В коробке   шаров.   из них белые,   – черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще   черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего   шаров. Из них   белых.

Вероятность равна:

б) Теперь шаров в коробке стало  . А белых осталось столько же –  .
 

Ответ:

а)  
б)  

Полная вероятность

Вероятность всех возможных событий равна   ( ).

Действительно, если мы будем считать, что все события для нас благоприятны, вероятность благоприятного исхода будет равна  .

Допустим, в ящике   красных и   зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар
 

Зеленый шар:
 

Красный или зеленый шар:
 

Как видишь, сумма всех возможных событий равна   ( ). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит   фломастеров:   зеленых,   красных,   синих,   желтых,   черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.
 

Всего их  .  .
 

Так мы учились считать раньше, но сейчас, зная что такое полная вероятность, можно поступить немного проще.

Вероятность всех событий  . А вероятность событий, которые мы считаем неблагоприятными (когда вытащим красный фломастер) –   .

Таким образом, вероятность вытащить НЕ красный фломастер –  .

Ответ:

Запомни:

Вероятность того, что событие не произойдет, равна   минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Можно конечно посчитать, но есть способ проще.

Допустим мы хотим знать, какова вероятность того, что бросая монетку   раза, мы два раза увидим орла?

Мы уже считали –  .

А если бросаем монетку   раза? Какова вероятность увидеть орла   раза подряд?

Всего возможных вариантов  :

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я   раза ошибся, составляя этот список. Ух! А подходит нам только   вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в   испытании?  . Теперь мы бросаем монетку   раз.

Какова вероятность выпадения   раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при   бросках подряд, мы поступили бы также.

Вероятность выпадения решка –  , орла –  .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:
 

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий

Так стоп! Новое определение.

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её   раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий.   – это несовместные события.

Вероятности несовместных событий складываются.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки – это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности  ) (или любой другой), то мы пользуемся правилом умножения вероятностей. Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно   раз, т.е. варианты   и  , то мы должны сложить вероятности этих последовательностей.

Всего вариантов  , нам подходит  .
 

То же самое мы можем получить, сложив вероятности появления каждой последовательности:
 
Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» – сложения.

Возвратимся к примеру, когда мы подбросили монетку   раза, и хотим узнать вероятность увидеть орла   раз.
Что должно произойти?

Должны выпасть: (орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел). Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит   карандашей.   красных,   зеленых,   оранжевых и   желтых и   черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Что должно произойти? Мы должны вытащить (красный ИЛИ зеленый).

Теперь понятно, складываем вероятности этих событий:
 

Ответ:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить   очков?

(  и  ) или (  и  ) или (  и  ) или (  и  ) или (  и  ).

Вероятность выпадения одной (любой) грани –  .

Считаем вероятность:

Тренировка

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой   карты, из них   пик,   червей, 13 треф и 13 бубен. От   до туза каждой масти.

  1. Какова вероятность вытащить   трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию – (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

  1. В колоде   карты каждого достоинства, значит:  
  2. События зависимы, так как после первой вытащенной карты количество карт в колоде уменьшилось (как и количество «картинок»). Всего вальтов, дам, королей и тузов в колоде изначально  , а значит вероятность первой картой вытащить «картинку»:
     
    Поскольку мы убираем из колоды первую карту, то значит в колоде осталось уже   карта, из них   картинок. Вероятность второй картой вытащить картинку:
      Поскольку нас интересует ситуация, когда мы достаем из колоды: «картинку» И «картинку», то нужно перемножать вероятности:
    Ответ:  
  3. После первой вытащенной карты, количество карт в колоде уменьшится.Таким образом, нам подходит два варианта: 1) Первой картой вытаскиваем Туза, второй – валета, даму или короля

    2) Первой картой вытаскиваем валета, даму или короля, второй – туза.Т.е. (туз и (валет или дама или король)) или ((валет или дама или король) и туз). Не забываем про уменьшение количества карт в колоде! 

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

Теория вероятностей. средний уровень

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от   до скольки? До  .

Итак, мы бросаем кость и хотим, чтобы выпало   или  . И нам выпадает  .

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало  , событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий  , значит, неблагоприятных из них   события (это если выпадет   или  ).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий. То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой   (видимо, от английского слова probability – вероятность).

Принято измерять вероятность в процентах (см. темы “Дроби, рациональные числа” и “Проценты”). Для этого значение вероятности нужно умножать на  . В примере с игральной костью вероятность  .

А в процентах:  .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой – нечетное?
  3. В ящике   простых,   синих и   красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка – всего два. А сколько из них благоприятных? Только один – орел. Значит, вероятность
     
    С решкой то же самое:  .
  2. Всего вариантов:   (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них:   (это все четные числа:  ).
    Вероятность  . С нечетными, естественно, то же самое.
  3. Всего:  . Благоприятных:  . Вероятность:  .

Независимые события и правило умножения

Ты кидаешь монетку   раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего   варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна  .

Хорошо. А теперь кидаем монетку   раза. Посчитай сам. Получилось? (ответ  ).

А теперь   раз. Слабо посчитать все варианты?

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в   раза. Общее правило называется правилом умножения:

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет  ?
  2. Монетку бросают   раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна  ?

Ответы:

  1. События независимы, значит, работает правило умножения:  .
  2. Вероятность орла равна  . Вероятность решки – тоже  . Перемножаем:
     
  3. 12 может получиться только, если выпадут две  -ки:  .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке   карандашей, среди них   синих,   красных,   зеленых,   простых,   желтый, а остальные – оранжевые. Какова вероятность вытащить зеленый или красный?

Решение.

Вероятность вытащить зеленый карандаш равна  . Красный –  .

Благоприятных событий всего  :   зеленых +   красных. Значит, вероятность вытащить зеленый или красный равна  .

Эту же вероятность можно представить в таком виде:  .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение.

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» – сложение:

 .

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет   очков?

Решения:

  1. (Выпал орел и выпал орел) или (выпала решка и выпала решка):  .
  2. Какие есть варианты?   и  . Тогда:
    Выпало (  и  ) или (  и  ) или (  и  ):  .

Еще пример:

Бросаем монетку   раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

Ой, как же не хочется перебирать варианты… Орел-решка-решка, Орел-орел-решка, … А и не надо! Вспоминаем про полную вероятность. Вспомнил? Какова вероятность, что орел не выпадет ни разу? Это же просто: все время летят решки, значит  .

Тогда:  .

Теория вероятностей. коротко о главном

Вероятность – это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна   ( ).

Вероятность того, что событие не произойдет, равна   минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене “чашка кофе в месяц”, 

А также получить бессрочный доступ к учебнику “YouClever”, Программе подготовки (решебнику) “100gia”, неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

Вы сможете сначала оценить насколько они вам подходят и потом принять взвешенное решение. 

Источник: https://youclever.org/book/teoriya-veroyatnostej-1

Что такое вероятность и как ее посчитать

Вычисление вероятности.

Пусть будет некий абстрактный эксперимент в процессе которого может происходить некое событие. Этот эксперимент провели пять раз, и в четырех из них происходило то самое событие.

Какие выводы можно сделать из этих 4/5?

Есть формула Бернулли, которая дает ответ, с какой вероятностью происходит 4 из 5 при известной исходной вероятности.

Но она не дает ответ, какая была исходная вероятность, если событий получилось 4 из 5. Оставим пока в стороне формулу Бернулли.

Сделаем маленькую простенькую программку, симулирующую процессы вероятностей для такого случая, и на основе результата вычислений построим график.
void test1() { uint sz_ar_events = 50; // замеряемых точек графика uint ar_events[sz_ar_events]; // в этом массиве сбор данных для графика for (uint i = 0; i < sz_ar_events; ++i) ar_events[i] = 0; uint cnt_events = 0; // сколько уже событий в точках графика uint k = 4; // k событий из n экспериментов uint n = 5; // НАКОПЛЕНИЕ СТАТИСТИКИ while (cnt_events < 1000000) { // случайный выбор предполагаемой вероятности // эксперимента, из диапазона 0..1 double probability = get_random_real_0_1(); uint c_true = 0; for (uint i = 0; i < n; ++i) { // вероятность события в эксперименте probability, // и n-раз взяли истина или ложь с выбранной этой вероятностью bool v = get_true_with_probability(probability); if (v) ++c_true; } // если из n-раз получили k-раз истину, значит это тот самый случай if (c_true == k) { uint idx = lrint(floor(probability*sz_ar_events)); assert( idx < sz_ar_events ); // проверка, что с округлением не напутал ++cnt_events; // всего событий ++ar_events[idx]; // событий в этой точке графика } } // ВЫВОД РЕЗУЛЬТАТА for (uint i = 0; i < sz_ar_events; ++i) { double p0 = DD(i)/sz_ar_events; // плотность вероятности: // вероятность на отрезке деленное на протяженность отрезка double v = DD(ar_events[i])/cnt_events / (1.0/sz_ar_events); printf("%4.2f %f", p0, v); }}
Код этой программы можно найти здесь, рядом же вспомогательные функции. Полученный расчет закинул в эксель и сделал график. Такой вариант графика можно назвать распределением плотности вероятностей значения вероятности. Его площадь равна единице, которая распределена в этом холмике. Для полноты картины упомяну, что этот график соответствует графику по формуле Бернулли от параметра вероятность и умноженный на N+1 количества экспериментов. Далее по тексту, там где в статье употребляю дробь вида k/n, то это не деление, это k событий из n экспериментов, чтобы каждый раз не писать k из n. Далее. Можно увеличить количество экспериментов, и получить более узкую область расположения основных величин значения вероятность, но как бы их не увеличивали, эта область не сократится до нулевой области с точно известной вероятностью. На графике ниже изображены распределения для величин 4/5, 7/9, 11/14 и 24/30. Чем уже область, тем выше холмик, площадь которого неизменная единица. Эти соотношения выбраны, потому что они все около 0.8, а не потому что именно такие могут возникнут при 0.8 исходной вероятности. Выбраны, чтобы продемонстрировать, какая область возможных значений остается даже при 30 проведенных экспериментах.

Код программы для этого графика здесь.

Из чего следует, что в действительности экспериментальную вероятность абсолютно точно не определить, а можно лишь предположить область возможного расположения таковой величины, с точностью в зависимости от того сколько произвели замеров. Сколько бы экспериментов не провели, всегда остается вероятность, что исходная вероятность может оказаться и 0.0001 и 0.9999. Для упрощения крайние маловероятные значения отбрасываются. И берется, скажем, например 95% от основной площади графика распределения. Такая штука называется доверительные интервалы. Каких-либо рекомендаций, сколько именно и почему процентов нужно оставить я не встречал. Для прогноза погоды берут поменьше, для запуска космических шаттлов побольше. Так же обычно не упоминают, какой все же используется доверительный интервал на вероятность событий и используется ли вообще.

В моей программе расчет границ доверительного интервала осуществляется здесь.

Получилось, что вероятность события определяется плотностью вероятностей значения вероятности, и на это еще нужно наложить процент области основных значений, чтобы можно было хоть что-то определенно сказать, какая все же вероятность у исследуемого события.

Теперь, про более реальный эксперимент

Пусть будет всем надоевшая монетка, подбрасываем эту монетку, и получаем 4 из 5 выпадений решкой — очень реальный случай. В действительности это не совсем то же самое, что описал чуть выше.

Чем это отличается от предыдущего эксперимента?

Предыдущий эксперимент описывался из предположения, что вероятность события может быть равнораспределена на интервале от 0 до 1. В программе это задается строкой double probability = get_random_real_0_1();.

Но не бывает монеток с вероятностью выпадения, скажем, 0.1 или 0.9 всегда одной стороной.

Источник: https://habr.com/post/456824/

Теория вероятности формулы и примеры решения задач

Вычисление вероятности.

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.

е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. .
  2. Вероятность невозможного события равна 0, т.е. .
  3. Вероятность достоверного события равна 1, т.e. .
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные  из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику.

Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место.

Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов  В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя.

Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: .

В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события.

Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Источник: https://repetitor-mathematics.ru/teoriya-veroyatnosti-formulyi-i-primeryi-resheniya-zadach/

Базовая формула для вычисления вероятности

Вычисление вероятности.

Скачать книгу

Что же это за события, для которых можно точно определить вероятности? Покажем это сначала на примере нашей игры в «слепой» дартс. Также будем полагать, что мишень занимает половину стены. И выделим два события:

A: дротик попадает в мишень;

B: дротик не попадает в мишень.

В чем особенность этих двух событий? Дело в том, что они оба образуют все возможные исходы при бросании дротиков. Или, как говорят в теории вероятностей, они образуют полную группу событий. И эта полная группа, в данном случае, состоит из двух событий: A и B. Обозначим размер этой группы через .

Вторая важная особенность этих событий – это то, что они не могут произойти одновременно в одном эксперименте. Действительно, дротик либо попадает в цель, либо не попадает. Про такие события говорят, что они несовместные.

Так вот, если мы имеем полную группу несовместных событий, то для них всегда выполняется равенство:

.

По сути, эта формула говорит, что при бросании дротика мы или попадем в цель или не попадем. И, разумеется, вероятность этого равна 1.

Наконец, последнее. Так как мишень занимает половину стены, а дротики равномерно распределяются по ней, то в половине случаев они будут попадать в цель, а в половине – не попадать. То есть, вероятности событий A и B равны  и составляют величину 1/2. Это же значение можно вычислить еще и так. Учитывая, что  и , имеем равенство:

и, соответственно,

А теперь давайте применим этот же подход к вычислению вероятностей выпадения орла или решки симметрической монетки. Также обозначим два события:

A: выпадение орла;

B: выпадение решки.

Эти события образуют полную группу событий, то есть, при подбрасывании монетки никакое другое событие, кроме этих двух, произойти не может. Размер этой группы также равен . Очевидно, что они несовместны (не могут оба произойти одновременно при однократном подбрасывании) и равновероятны (так как стороны монетки совершенно одинаковы). Отсюда автоматически получаем, что

Чуть усложним задачу и рассмотрим игральный кубик с одинаковыми шестью гранями. Каждая грань кубика пронумерована от 1 до 6. И для них введем шесть событий: .

Эти несовместные события образуют полную группу событий размером  и равновероятны (так как грани кубика абсолютно одинаковы, а сам кубик имеет одинаковую плотность и материал в каждой его точке).

Тогда неизбежно получаем следующие вероятности появления той или иной грани кубика:

потому что

Теперь внимательно посмотрите на полученные формулы. В знаменателе каждой из них стоит число  – размер группы, а в числителе записана 1. Обозначим ее через  – это число элементарных несовместных событий благоприятных тому или иному исходу. Например, если при бросании игрального кубика ввести такое событие:

A: выпадение числа 1 или числа 3,

то для него будут благоприятны уже два элементарных события:  и . И в этом случае . Соответственно, вероятность этого события будет равна:

Вот мы с вами познакомились с первой формулой для вычисления вероятностей некоторых событий:

Здесь  – это размер полной группы несовместных равновероятных событий;  – число элементарных событий (из полной группы), благоприятных некоторому исходу (для которого и вычисляется вероятность).

Чтобы лучше понять как применять данную формулу, рассмотрим несколько типовых задач из ЕГЭ по теории вероятностей.

Задача 1. В среднем из 1000 садовых насосов, поступивших в продажу, 7 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение.

Обратите внимание на формулировку «в среднем». Она указывает на то, что числа 1000 и 7 непосредственно описывают вероятности подтекания и не подтекания насосов.

Далее, мы можем рассмотреть группу из  насосов. Здесь каждый насос можно воспринимать как отдельное элементарное несовместное событие (так как для контроля выбирается только один). А все вместе они образуют полную группу событий. Запишем событие, вероятность которого требуется найти:

A: случайно выбранный для контроля насос не подтекает.

Число благоприятных исходов для него будет равно , так как именно столько насосов из 1000, в среднем, не подтекают. Подставляем эти значения в формулу вычисления вероятности, получаем:

Ответ: 0,993.

Задача 2. В фирме такси в данный момент свободно 35 машин: 11 красных, 17 фиолетовых и 7 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.

Решение.

Здесь понятия «в среднем» не требуется, так как имеется ограниченная выборка из 35 такси. Мы из этих машин составляем полную группу несовместных и равновероятных событий размером . Далее, вводим искомое событие

A: приедет зеленое такси.

И, так как зеленых машин 7, то благоприятных исходов для события A равно . Подставляем эти величины в формулу вычисления вероятности, получаем:

Ответ: 0,2.

Задача 3. На тарелке 16 пирожков: 8 с мясом, 3 с яблоками и 5 с луком. Настя наугад выбирает один пирожок. Найдите вероятность того, что он окажется с мясом.

Решение.

Решение этой задачи аналогично предыдущей, только вместо такси пирожки с различными начинками. Попробуйте решить ее самостоятельно.

Онлайн курсы ЕГЭ и ОГЭ

по теме

Источник: https://self-edu.ru/balak_scool_tp.php?id=1_3

Вероятность, теория вероятности

Вычисление вероятности.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2.

Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является “честной” и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев.

Таким образом, существует два вида вероятностей: экспериментальная и теоретическая.

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз – скажем, 1000 – и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: “Этого не может быть!”. На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока – чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности.

Вы можете спросить: “Что такое истинная вероятность?” На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой.

Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек – правша.

b) Определите вероятность того, что человек – левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками – 1. Общее количество наблюдений – 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% – левши. Отсюда17% от 120 = 0,17.120 = 20,4,

то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества. Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса.

Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет.

Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали.

Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается.

В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал “Все любят Реймонда” на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research).

Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond” в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на “Все любят Реймонда” равна Р, и P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, иP = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.

Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии.

Каждый возможный результат такого эксперимента называется исход. Множество всех возможных исходов называется пространством исходов.

Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

a) Исходы

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.
Предположим, что мы бросаем игральную кость. Найдитеa) Исходы

b) Пространство исходов

Решениеa) Исходы: 1, 2, 3, 4, 5, 6.

b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, “монета упадет решкой” можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны.

Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора – одинаковые.

Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие – это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения – это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.b) Если событие E случиться непременно тогда P(E) = 1.

c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52C2. Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13C2. Тогда,
P(вытягивания 2-х пик)= m/n = 13C2/52C2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10C3. Один мужчина может быть выбран 6C1 способами, и 2 женщины могут быть выбраны 4C2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6C1.4C2. Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6C1.4C2/10C3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках.

(Лучше, если кубики разные, скажем один красный а второй голубой – это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу.

Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Источник: https://www.math10.com/ru/algebra/veroiatnosti/veroiatnosti/teoriya-veroyatnostei.html

Book for ucheba
Добавить комментарий